Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (420)

Search Parameters:
Journal = Recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Recycling of Polypropylene Recovered from a Composting Plant: Mechanical Behavior of Compounds with Virgin Plastic
Recycling 2023, 8(4), 62; https://doi.org/10.3390/recycling8040062 - 31 Jul 2023
Viewed by 176
Abstract
The recycling of polypropylene recovered from waste discarded by a composting plant was investigated. The recovery involved a sorting step carried out by means of an optical infrared separator and a subsequent washing treatment. This method of processing allowed us to obtain polypropylene [...] Read more.
The recycling of polypropylene recovered from waste discarded by a composting plant was investigated. The recovery involved a sorting step carried out by means of an optical infrared separator and a subsequent washing treatment. This method of processing allowed us to obtain polypropylene that was only slightly contaminated by other polymeric and inorganic materials. As many tens of tons of polypropylene could be recovered every year in this plant, recycling could be convenient from the economic point of view and beneficial for the protection of the environment. In fact, the landfill of this waste could be reduced in this manner. A possible mechanical recycling route was developed for the recovered plastic. The recycling was carried out by pelletizing the recovered polypropylene, mixing it with a commercial polypropylene feedstock, and manufacturing items by injection molding. In this way, tensile specimens containing different amounts of recycled polypropylene were processed and tested. Their tensile features were compared with those of a commercial polypropylene that was used as a reference. The elastic modulus and tensile strength were slightly worsened when using the recycled plastic, while the strain at failure significantly increased. Nonetheless, the tensile properties of compounds made by mixing recycled and virgin polypropylene were consistent with the characteristics that are expected for polypropylene-based plastics. Full article
Show Figures

Graphical abstract

Review
Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview
Recycling 2023, 8(4), 61; https://doi.org/10.3390/recycling8040061 - 20 Jul 2023
Viewed by 533
Abstract
The sustainable management of lignocellulosic agricultural waste has gained significant attention due to its potential for the production of valuable products. This paper provides an extensive overview of the valorization strategies employed to convert lignocellulosic agricultural waste into economically and environmentally valuable products. [...] Read more.
The sustainable management of lignocellulosic agricultural waste has gained significant attention due to its potential for the production of valuable products. This paper provides an extensive overview of the valorization strategies employed to convert lignocellulosic agricultural waste into economically and environmentally valuable products. The manuscript examines the conversion routes employed for the production of valuable products from lignocellulosic agricultural waste. These include the production of biofuels, such as bioethanol and biodiesel, via biochemical and thermochemical processes. Additionally, the synthesis of platform chemicals, such as furfural, levulinic acid, and xylose, is explored, which serve as building blocks for the manufacturing of polymers, resins, and other high-value chemicals. Moreover, this overview highlights the potential of lignocellulosic agricultural waste in generating bio-based materials, including bio-based composites, bio-based plastics, and bio-based adsorbents. The utilization of lignocellulosic waste as feedstock for the production of enzymes, organic acids, and bioactive compounds is also discussed. The challenges and opportunities associated with lignocellulosic agricultural waste valorization are addressed, encompassing technological, economic, and environmental aspects. Overall, this paper provides a comprehensive overview of the valorization potential of lignocellulosic agricultural waste, highlighting its significance in transitioning towards a sustainable and circular bioeconomy. The insights presented here aim to inspire further research and development in the field of lignocellulosic waste valorization, fostering innovative approaches and promoting the utilization of this abundant resource for the production of valuable products. Full article
Show Figures

Figure 1

Editorial
Special Issue “Feature Papers in Recycling 2022”
Recycling 2023, 8(4), 60; https://doi.org/10.3390/recycling8040060 - 13 Jul 2023
Viewed by 360
Abstract
This Special Issue aimed to collect high-quality papers (original research articles or comprehensive review papers) published during 2022 on the subject of waste recycling [...] Full article
(This article belongs to the Special Issue Feature Papers in Recycling 2022)
Article
The Recycling of End-of-Life Lithium-Ion Batteries and the Phase Characterisation of Black Mass
Recycling 2023, 8(4), 59; https://doi.org/10.3390/recycling8040059 - 12 Jul 2023
Viewed by 629
Abstract
Black mass is the industry term applied to end-of-life (EoL) lithium-ion batteries that have been mechanically processed for potential use as a recycled material to recover the valuable metals present, including cobalt, lithium, manganese, nickel and copper. A significant challenge to the effective [...] Read more.
Black mass is the industry term applied to end-of-life (EoL) lithium-ion batteries that have been mechanically processed for potential use as a recycled material to recover the valuable metals present, including cobalt, lithium, manganese, nickel and copper. A significant challenge to the effective processing of black mass is the complexity of the feed material. Two samples of black mass from a European source were analysed using a combination of methods including automated SEM-EDS (AMICS) to characterise and quantify the phases present and particle chemistry. Micro X-CT imaging, overlain onto automated mineralogy images, enabled the 3D morphology of the particles to be determined. Micro-XRF was used to map the copper, nickel, manganese and cobalt-bearing phases. Since Li cannot be detected using SEM-EDS, its abundance was semi-quantified using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The integration of these complimentary analytical methods allowed for detailed phase characterisation, which may guide the potential hydrometallurgical or pyrometallurgical recycling routes and chemical assaying. Full article
(This article belongs to the Special Issue Recycling of Spent Batteries—Trash to Treasure)
Show Figures

Figure 1

Article
Assessing the Measurement Model for Source-Separating Waste for Recycling under a Proposed Smart Waste Management Scheme in Shah Alam, Malaysia
Recycling 2023, 8(4), 58; https://doi.org/10.3390/recycling8040058 - 07 Jul 2023
Viewed by 392
Abstract
Due to rapid urbanization, solid waste management (SWM) is a major challenge in Malaysia, hence the need to sustainably manage it. Compared with other states, Selangor produces the highest volume of domestic waste. Most of the state’s waste is generated in Shah Alam [...] Read more.
Due to rapid urbanization, solid waste management (SWM) is a major challenge in Malaysia, hence the need to sustainably manage it. Compared with other states, Selangor produces the highest volume of domestic waste. Most of the state’s waste is generated in Shah Alam City. This condition is expected to worsen because the population of Shah Alam is projected to rise by 2.5% from 2018 to 2035. This situation will increase the demand for resources, production, and consumption, increasing the volume of waste generated in Shah Alam. Hence, the pressing necessity to advance from the current traditional waste management practices to a more sustainable SWM system has been identified as a key target in Shah Alam’s 2025–2030 plans. The Smart Waste Management System (SWMS) has been identified as a novel approach to dealing with the absence of route optimization, real-time information exchange, and the consequent increase in waste management costs. All of these elements have characterized the current traditional households’ SWM. However, because this method is novel, there is a dearth of knowledge on the appropriate measurement model for evaluating the dimension of households’ intention to recycle waste through source separation as well as measuring the determinants of such a pro-environmental intention under the new SWMS. Thus, confirmatory factor analysis (CFA) was carried out to verify the factorial structure of the variables, relying on the Theory of Planned Behavior (TPB) based on the structural dimensions identified in prior exploratory factor analysis (EFA). The study found support for the use of TPB as a relevant framework for modeling the intention for source separation and its determinants under SWMS. Full article
Show Figures

Figure 1

Article
Evaluation of Biogas Energy from Co-Digestion of Organic Urban Solid Waste with Lime Mud
Recycling 2023, 8(4), 57; https://doi.org/10.3390/recycling8040057 - 01 Jul 2023
Viewed by 705
Abstract
The elevated presence of organic material in Brazilian urban solid waste, along with mismanagement of its disposal, can aggravate environmental problems from greenhouse gas emissions to water and soil pollution. In parallel, the paper and cellulose industries consume considerable resources and produce important [...] Read more.
The elevated presence of organic material in Brazilian urban solid waste, along with mismanagement of its disposal, can aggravate environmental problems from greenhouse gas emissions to water and soil pollution. In parallel, the paper and cellulose industries consume considerable resources and produce important solid wastes, including lime mud. These urban and industrial realities present common ground, from which a little-studied alternative arises in using biogas electrical energy from the co-digestion of the organic portion of urban solid waste using lime mud. This intersection can reduce the environmental impacts associated with inadequate management and disposal of solid waste, providing industry financial economy resources and contributing to Brazilian energy grid diversification. The current study used economic–financial indicators to evaluate the proposal’s economic feasibility. The obtained results presented a minimum population of 165,200 inhabitants, generating 39,295.77 m3/year of methane, in order to enable a co-digestion proposal. The sensitivity analysis indicated that a population of 185,500 inhabitants would provide a 10-year payback, an energy rate of USD 0.139, and 44,124.49 m3/year of methane to supply the population with power. The net present value was USD 23,336.94, with an internal return rate of 14.71% and a levelized energy cost of 0.103 USD/kWh. Full article
(This article belongs to the Special Issue Sustainable Recycling of Municipal Solid Waste)
Show Figures

Figure 1

Article
Sustainable Waste Management for Clean and Safe Environments in the Recreation and Tourism Sector: A Case Study of Lithuania, Turkey and Morocco
Recycling 2023, 8(4), 56; https://doi.org/10.3390/recycling8040056 - 28 Jun 2023
Viewed by 817
Abstract
Due to intensive tourism and increasing demand for recreational activities, people produce more waste. In this context, the aim of this research is to determine the opinions of experts working in tourism and recreation areas in Lithuania, Turkey and Morocco with respect to [...] Read more.
Due to intensive tourism and increasing demand for recreational activities, people produce more waste. In this context, the aim of this research is to determine the opinions of experts working in tourism and recreation areas in Lithuania, Turkey and Morocco with respect to waste management problems. Interviews were held in Turkey, Lithuania and Morocco in order to determine the attitudes of experts about recreational activities with respect to a clean environment and sustainability. A semistructured interview form was used for interviews with forest operators and other experts. The sample group consisted of 24 experts from Turkey, Lithuania and Morocco. The prominent results of the interviews conducted in the three countries regarding waste and sustainable waste management can be listed as follows: intensive waste production caused by participants, inadequate legal regulation, insufficient recycling, damage to the environment and natural structures, inadequate control and inspections, lack of education and awareness activities, an insufficient number of personnel and insufficient infrastructure. Sustainable waste management strategies, such as reducing waste generation, improving waste collection and disposal methods, and promoting recycling and composting, can help to mitigate these negative impacts. Full article
Show Figures

Figure 1

Article
The Impact of Industry 4.0 on the Steel Sector: Paving the Way for a Disruptive Digital and Ecological Transformation
Recycling 2023, 8(4), 55; https://doi.org/10.3390/recycling8040055 - 28 Jun 2023
Viewed by 415
Abstract
Since the creation of a common term to indicate a set of incremental and disruptive digital technologies, Industry 4.0 has challenged European manufacturers to find a way to concretely exploit these innovations in their own business strategy. During this journey, Industry 4.0 has [...] Read more.
Since the creation of a common term to indicate a set of incremental and disruptive digital technologies, Industry 4.0 has challenged European manufacturers to find a way to concretely exploit these innovations in their own business strategy. During this journey, Industry 4.0 has recently highlighted some evidence about its efficacy in enabling strategic goals on the three dimensions (economical, environmental, social) of sustainable development, which is a key element for the European Union’s goal to make manufacturers become carbon neutral until 2030. Industry 4.0 and sustainability are together affecting manufacturers’ business models, forcing managers to take chances and face challenges within their organization and in their supply-chain. As an energy-intensive sector, steel industries will be intensively affected by sustainability paradigms. With 19 qualitative interviews in the organization and supply chain of an internationalized steel producer, Feralpi Group, we provide evidence that, beyond the use of main strategic technologies (Internet of Things and Big Data analysis), the implementation of a sustainability strategy is also possible through the creation of new partnerships beyond the own supply chain. The combination of Industry 4.0 technologies and sustainability strategies, especially concerning the environment through Circular Economy practices, pushes steel industries to revise their business models, paving the way for unexpected collaborations, where suppliers, customers, and even more diverse stakeholders such as competitors could bring benefits to the company sustainable economic growth and durability. Full article
Show Figures

Figure 1

Article
Recycled Construction and Demolition Waste as Supplementary Cementing Materials in Eco-Friendly Concrete
Recycling 2023, 8(4), 54; https://doi.org/10.3390/recycling8040054 - 28 Jun 2023
Viewed by 427
Abstract
Growing environmental awareness and scarcity of natural resources are forcing the world to migrate from linear to circular economies. The possibility of partially replacing cement with ceramic-based waste from construction and demolition waste (C&DW) is a government and industry focus. The present study [...] Read more.
Growing environmental awareness and scarcity of natural resources are forcing the world to migrate from linear to circular economies. The possibility of partially replacing cement with ceramic-based waste from construction and demolition waste (C&DW) is a government and industry focus. The present study analyzes the effects of including finely ground complete walls of ceramic blocks (including masonry mortars) as supplementary cementing materials (SCM) on the physical, mechanical, and transport properties (water absorption and permeability) of concrete. The replacement ratio employed was 25% by weight of cement. Studies of the hydration evolution of cement pastes support the described properties of concretes. The findings reveal that the ground ceramic-based waste from C&DW stimulates hydration at all ages. Initially, this stimulation is predominantly physical (filler effect), but in later stages, it becomes chemical (pozzolanic reaction). Based on the results obtained in this study, it is possible to produce concrete with mechanical properties comparable to those of conventional concrete at 28 days. Full article
Show Figures

Figure 1

Review
Carbon-Based Synthesized Materials for CO2 Adsorption and Conversion: Its Potential for Carbon Recycling
Recycling 2023, 8(4), 53; https://doi.org/10.3390/recycling8040053 - 21 Jun 2023
Viewed by 1534
Abstract
During the last half-century, the CO2 concentration in the world’s atmosphere has increased from 310 p.p.m. to over 380 p.p.m. This is due to the widespread usage of fossil fuels as a main source of energy. Modeling forecasts have shown that this trend will [...] Read more.
During the last half-century, the CO2 concentration in the world’s atmosphere has increased from 310 p.p.m. to over 380 p.p.m. This is due to the widespread usage of fossil fuels as a main source of energy. Modeling forecasts have shown that this trend will continue to rise and reducing CO2 emissions is a challenging task for multi-stakeholders, including research institutions. The UN Climate Change Conference in Glasgow (COP26) has stressed that stakeholders need to work together to achieve a NetZero target. Technologies involving absorbents for the capture of CO2 from a gas mixture are energy-intensive. Carbon adsorption and conversion (CAC) approaches have been gaining attention recently since these technologies can mitigate CO2 emissions. In this review, materials ranging from advanced carbon-based materials to natural resources-based materials will be reviewed. Adsorption and conversion capacities as well as the scalability possibility of these technologies for solving the CO2 emission problem will be investigated. The review, therefore, is timely and meaningful concerning the net zero emission targets set by countries and developmental organizations worldwide. Full article
(This article belongs to the Special Issue Featured Reviews in Recycling)
Show Figures

Figure 1

Article
Valuation of Plastic Waste as a Community Circular Economy Strategy in the Municipality of Choco–Colombia
Recycling 2023, 8(3), 52; https://doi.org/10.3390/recycling8030052 - 20 Jun 2023
Viewed by 940
Abstract
A business solution is proposed for the accumulation of waste in the Municipality of Choco without prior treatment through the establishment of a center for the reception, classification, recovery and use of solid plastic waste in the Municipality of Quibdo, which would optimize [...] Read more.
A business solution is proposed for the accumulation of waste in the Municipality of Choco without prior treatment through the establishment of a center for the reception, classification, recovery and use of solid plastic waste in the Municipality of Quibdo, which would optimize and expand the management of plastic waste. In this study, the basic diagnosis of the practices that are currently carried out in Quibdo is evaluated with the appropriation of the knowledge of the population, the technical structuring of the conditions of production of plastic wood is carried out from the management of plastic waste, recognition of the market for waste generated as an alternative for development and sustainable growth and the financial feasibility of the project and the profitability of each of the investment plans for its implementation. The results of the investigation include the identification of weaknesses and opportunities in waste management practices and the proposal of two investment plans for the establishment of the center. It is concluded that investment plan 2 would require 46,590.50 USD less than investment plan 1, equivalent to a 2.21% return compared to investment plan 1. Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
Show Figures

Figure 1

Article
Effect of Virgin PP Substitution with Recycled Plastic Caps in the Manufacture of a Product for the Telephony Sector
Recycling 2023, 8(3), 51; https://doi.org/10.3390/recycling8030051 - 09 Jun 2023
Viewed by 1112
Abstract
This study investigated the effects of partial and total substitutions of fossil polypropylene (PP) for recycled plastic cap equivalents in the manufacture of signage labels used by the telephone industry. Four alternative scenarios to using virgin PP were evaluated considering recycled material in [...] Read more.
This study investigated the effects of partial and total substitutions of fossil polypropylene (PP) for recycled plastic cap equivalents in the manufacture of signage labels used by the telephone industry. Four alternative scenarios to using virgin PP were evaluated considering recycled material in flake and pellet forms based on environmental performance, degree of circularity, and technical behavior. The environmental analysis was performed by the life cycle assessment (LCA) technique, and for all impact categories evaluated, using recycled material to replace the virgin reduced adverse effects on the environment. The most significant results in this dimension, with gains of 81% in the Global Environmental Indicator, occurred when recycled PP flakes entirely replaced the fossil polymer. Once again, the highest values of the Materials Circularity Indicator (MCI) were achieved by scenarios with full recycled resin in processing the tags; however, this product must also be reused. The mechanical behavior of the tags measured technical performance, and in this case, the product made with virgin PP outperformed the recycled options except for elongation. An analysis that integrated the three dimensions into a single performance index pointed to the complete substitution of virgin material for recycled as the most balanced option. Full article
(This article belongs to the Special Issue Advances in the Recycling, Processing and Use of Plastic Waste II)
Show Figures

Figure 1

Article
Bioherbicide from Azadirachta indica Seed Waste: Exploitation, Efficient Extraction of Neem Oil and Allelopathic Effect on Senna occidentalis
Recycling 2023, 8(3), 50; https://doi.org/10.3390/recycling8030050 - 24 May 2023
Viewed by 975
Abstract
Bioherbicides are an alternative to minimize the damage caused to the environment using agrochemicals. This study had the objective of extracting neem oil from ripe waste fruits that Azadirachta indica A. Juss and optimizing the process using solvents (or a mixture of solvents) [...] Read more.
Bioherbicides are an alternative to minimize the damage caused to the environment using agrochemicals. This study had the objective of extracting neem oil from ripe waste fruits that Azadirachta indica A. Juss and optimizing the process using solvents (or a mixture of solvents) with different polarities. Then, through a solid-liquid extraction system (Soxhlet), the solvents hexane, methanol/hexane (1:1), ethanol, and hexane/ethanol (1:1) were used to determine the process with the highest yield and most efficiency. The physicochemical parameters of the extracted oil (density, acidity value, iodine value, saponification value, esters value, and molecular weight) and the % of free fatty acids were determined. In addition, the allelopathic properties of the oil (0%, 2%, 3%, and 4% m/v) on septic weed Senna occidentalis seeds were evaluated, analyzing their growth and development parameters (germination, germination speed, hypocotyl, and radicle length). Hexane was the most efficient (4 h) in neem oil extraction, with the highest yield (43%). It also provided a better oleic and linoleic acid content (41.3% and 18.6%), similar to ethanol extraction (41.1% and 20.22%). Moreover, the allelopathic properties were more prominent for the oils extracted with hexane and hexane/ethanol. This optimized process provides an efficient alternative to obtain a natural herbicidal potential for strategically controlling harmful plants. Full article
Show Figures

Figure 1

Article
Costs of Gasification Technologies for Energy and Fuel Production: Overview, Analysis, and Numerical Estimation
Recycling 2023, 8(3), 49; https://doi.org/10.3390/recycling8030049 - 19 May 2023
Viewed by 1715
Abstract
During recent years, gasification technology has gained a high potential and attractiveness to convert biomass and other solid wastes into a valuable syngas for energy production or synthesis of new biofuels. The implementation of real gasification facilities implies a good insight of all [...] Read more.
During recent years, gasification technology has gained a high potential and attractiveness to convert biomass and other solid wastes into a valuable syngas for energy production or synthesis of new biofuels. The implementation of real gasification facilities implies a good insight of all expenses that are involved, namely investments required in equipment during the project and construction phases (capital expenditures, CapEx) and costs linked to the operation of the plant, or periodic maintenance interventions (operational expenditures, OpEx) or costs related to operations required for an efficient and sustainable performance of a gasification plant (e.g., feedstock pre-treatment and management of by-products). Knowledge of these economic parameters and their corresponding trends over time may help decision-makers to make adequate choices regarding the eligible technologies and to perform comparisons with other conventional scenarios. The present work aims to provide an overview on CapEx associated with gasification technologies devoted to convert biomass or solid waste sources, with a view of reducing the carbon footprint during energy generation or production of new energy carriers. In addition, an analysis of technology cost trends over time using regression methods is also presented, as well as an evaluation of specific capital investments according to the amount of output products generated for different gasification facilities. The novelty of this work is focused on an analysis of CapEx of existing gasification technologies to obtain distinct products (energy and fuels), and to determine mathematical correlations relating technology costs with time and product output. For these purposes, a survey of data and categorization of gasification plants based on the final products was made, and mathematical regression methods were used to obtain the correlations, with a statistical analysis (coefficient of determination) for validation. Specific investments on liquid biofuel production plants exhibited the highest decreasing trend over time, while electricity production became the least attractive solution. Linear correlations of specific investment versus time fitted better for electricity production plants (R2 = 0.67), while those relating the product output were better for liquid biofuel plants through exponential regressions (R2 = 0.65). Full article
(This article belongs to the Special Issue Recycling and Recovery of Biomass Materials II)
Show Figures

Figure 1

Review
Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review
Recycling 2023, 8(3), 48; https://doi.org/10.3390/recycling8030048 - 08 May 2023
Cited by 1 | Viewed by 2082
Abstract
The global population has increased over time, therefore the need for sufficient energy has risen. However, many countries depend on nonrenewable resources for daily usage. Nonrenewable resources take years to produce and sources are limited for generations to come. Apart from that, storing [...] Read more.
The global population has increased over time, therefore the need for sufficient energy has risen. However, many countries depend on nonrenewable resources for daily usage. Nonrenewable resources take years to produce and sources are limited for generations to come. Apart from that, storing and energy distribution from nonrenewable energy production has caused environmental degradation over the years. Hence, many researchers have been actively participating in the development of energy storage devices for renewable resources using batteries. For this purpose, the lithium-ion battery is one of the best known storage devices due to its properties such as high power and high energy density in comparison with other conventional batteries. In addition, for the fabrication of Li-ion batteries, there are different types of cell designs including cylindrical, prismatic, and pouch cells. The development of Li-ion battery technology, the different widely used cathode and anode materials, and the benefits and drawbacks of each in relation to the most appropriate application were all thoroughly studied in this work. The electrochemical processes that underlie battery technologies were presented in detail and substantiated by current safety concerns regarding batteries. Furthermore, this review collected the most recent and current LIB recycling technologies and covered the three main LIB recycling technologies. The three recycling techniques—pyrometallurgical, hydrometallurgical, and direct recycling—have been the subject of intense research and development. The recovery of valuable metals is the primary goal of most recycling processes. The growth in the number of used LIBs creates a business opportunity to recover and recycle different battery parts as daily LIB consumption rises dramatically. Full article
Show Figures

Figure 1

Back to TopTop