Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Journal = Clean Technol.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Fluoride Removal and Recovery from Water Using Reverse Osmosis and Osmotic Membrane Crystallization
Clean Technol. 2023, 5(3), 973-996; https://doi.org/10.3390/cleantechnol5030049 - 07 Aug 2023
Viewed by 114
Abstract
Fluoride is a concern for human health at high concentrations, but it is also a valuable compound with multiple applications. Thus, having a system that gives the opportunity to remove and recover this valuable element from water is highly interesting. Reverse osmosis (RO) [...] Read more.
Fluoride is a concern for human health at high concentrations, but it is also a valuable compound with multiple applications. Thus, having a system that gives the opportunity to remove and recover this valuable element from water is highly interesting. Reverse osmosis (RO) is a promising technology in the removal of fluoride from water. Nevertheless, the residual retentate highly concentrated in fluoride is still a concern. The aim of this study was to evaluate the performance of an integrated process consisting of RO and membrane crystallization to remove fluoride from water and to recover it as a pure fluoride salt. Pure water permeability and fluoride rejection of a commercial RO membrane was tested under different conditions. In addition, the performance of an osmotic membrane crystallization setup was evaluated, considering the effect caused by the flow rates and the concentration of both the feed and the osmotic solution on the mass transfer coefficient. The crystallization process allowed the production of pure NaF crystals with octahedral morphology with a face-centered cubic crystal system. Full article
(This article belongs to the Special Issue Membrane Technology in Decentralized Applications)
Show Figures

Figure 1

Article
Eco-Friendly Cement Mortar with Wastewater Treatment Plant Sludge Upcycling
Clean Technol. 2023, 5(3), 961-972; https://doi.org/10.3390/cleantechnol5030048 - 02 Aug 2023
Viewed by 335
Abstract
This study aimed to investigate the technical feasibility of replacing cement in mortar production with sludge generated in wastewater treatment plants (WWTPs), prepared using different treatments. The sludge used in the experiments was processed using four different methods to investigate the effect of [...] Read more.
This study aimed to investigate the technical feasibility of replacing cement in mortar production with sludge generated in wastewater treatment plants (WWTPs), prepared using different treatments. The sludge used in the experiments was processed using four different methods to investigate the effect of processing on the mechanical strength of the specimens. The sludge was then mixed with mortar in different proportions, and samples were produced for flexural and compressive strength tests. The results showed that specimens with 7% sludge from the burned treatment exhibited the highest resistance, surpassing the standard. Specimens with sludge from the drying treatments showed similar results. This study found that using sludge in mortar production could lead to energy savings compared to traditional cement production methods. Moreover, the incorporation of sludge resulted in mortars that met the specifications of the EN 998-1:2018 standard, thereby indicating their technical feasibility. Therefore, this study demonstrated the potential of using sludge from WWTPs as a substitute for cement in mortar production, which could contribute to the reduction in the environmental impacts caused by civil construction and the development of sustainable alternatives for the disposal of sludge generated in WWTPs. Full article
Show Figures

Figure 1

Article
Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models
Clean Technol. 2023, 5(3), 934-960; https://doi.org/10.3390/cleantechnol5030047 - 28 Jul 2023
Viewed by 274
Abstract
This study aims to comprehensively investigate the current advances in water treatment technologies for the elimination of heavy metals using biomass-based adsorbents. The enhancement of adsorption capacity in biomass materials is achieved through surface modification, which increases their porosity and surface area. The [...] Read more.
This study aims to comprehensively investigate the current advances in water treatment technologies for the elimination of heavy metals using biomass-based adsorbents. The enhancement of adsorption capacity in biomass materials is achieved through surface modification, which increases their porosity and surface area. The study therefore focuses on the impact of different surface modification techniques on the adsorption capacity, as well as the evaluation of adsorptive removal techniques and the analysis of various isotherm and kinetics models applied to heavy metal contaminants. The utilization of kinetic and isotherm models in heavy metal sorption is crucial as it provides a theoretical background to understand and predict the removal efficiency of different adsorbent materials. In contrast to previous studies, this research examines a wide range of adsorbent materials, providing a comprehensive understanding of their efficacy in removing heavy metals from wastewater. The study also delves into the theoretical foundations of the isotherm and kinetics models, highlighting their strengths, limitations, and effectiveness in describing the performance of the adsorbents. Moreover, the study sheds light on the regenerability of adsorbents and the potential for their engineering applications. Valuable insights into the state-of-the-art methods for heavy metal wastewater cleanup and the resources required for future developments were discussed. Full article
Show Figures

Figure 1

Article
Mathematical Modeling of Particle Terminal Velocity for Improved Design of Clarifiers, Thickeners and Flotation Devices for Wastewater Treatment
Clean Technol. 2023, 5(3), 921-933; https://doi.org/10.3390/cleantechnol5030046 - 17 Jul 2023
Viewed by 266
Abstract
The prediction of the terminal velocity of a single spherical particle is essential to realize mathematical modeling useful for the design and adjustment of separators used in wastewater treatment. For non-spherical and non-single particles, terminal velocity can be traced back to that of [...] Read more.
The prediction of the terminal velocity of a single spherical particle is essential to realize mathematical modeling useful for the design and adjustment of separators used in wastewater treatment. For non-spherical and non-single particles, terminal velocity can be traced back to that of single spheres using coefficients and Kynch’s theory, respectively. Because separation processes can involve small or large particles and can be carried out using gravity, as with clarifiers/thickeners, or by centrifugation in centrifuges where the acceleration can exceed 10,000× g, the Reynolds number of the particle can be highly variable, ranging from 0.1 to 200,000. The terminal velocity depends on the drag coefficient, which depends, in turn, on the Reynolds number containing the terminal velocity. Because of this, to find the terminal velocity formula, it is preferable to look first for a relationship between the drag coefficient and the Archimedes number which does not contain the terminal velocity. Formulas already exist expressing the relationship between the drag coefficient and the Archimedes number, from which the relationship between the terminal velocity and the Archimedes number may be derived. To improve the accuracy obtained by these formulas, a new relationship was developed in this study, using dimensional analysis, which is valid for Reynolds number values between 0.1 and 200,000. The resulting mean relative difference, compared to the experimental standard drag curve, was only 1.44%. This formula was developed using the logarithms of dimensionless numbers, and the unprecedented accuracy obtained with this method suggested that an equally accurate formula for the drag coefficient could also be obtained with respect to the Reynolds number. Again, the resulting level of accuracy was unprecedentedly high, with a mean relative difference of 1.77% for Reynolds number values between 0.1 and 200,000. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

Article
Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa
Clean Technol. 2023, 5(3), 901-920; https://doi.org/10.3390/cleantechnol5030045 - 13 Jul 2023
Viewed by 585
Abstract
Cement has long been recognized as an energy- and emission-intensive construction material. Cement production has recently experienced significant growth despite its high energy consumption, resource usage, and carbon emissions. This study aims to assess and compare the life cycle assessment (LCA) of traditional [...] Read more.
Cement has long been recognized as an energy- and emission-intensive construction material. Cement production has recently experienced significant growth despite its high energy consumption, resource usage, and carbon emissions. This study aims to assess and compare the life cycle assessment (LCA) of traditional Portland cement (CEM I) to those of three blended cement types (CEM II/B-L, CEM II/B-V, and CEM III/A), which assume mature technologies for reducing carbon emissions in South Africa, using LCA in compliance with ISO/TS 14071 and 14072. As its scope, the study employs the “cradle to gate” method, which considers the raw materials, fuel usage, electricity, transportation, and clinkering stages, using 1 kg of cement as the functional unit. The LCA analyses were performed using SimaPro 9.1.1.1 software developed by PRé Consultants, Amersfoort, Netherlands and impact assessments were conducted using the ReCiPe 2016 v1.04 midpoint method in order to compare all 18 impact categories of 1 kg of cement for each cement type. The assessment results show reductions in all impact categories, ranging from 7% in ozone depletion and ionizing radiation (CEM II/B-L) to a 41% reduction in mineral resource scarcity (CEM III/A). The impacts of global warming were reduced by 14% in the case of CEM II/B-L, 29% in the case of CEM II/B-V and 35% in the case of CEM III/A. The clinkering process was identified as the primary cause of atmospheric impacts, while resource depletion impacts were attributed to raw materials, fuels, and electricity processes, and toxicity impacts were primarily caused by raw materials. Alternative materials, like fly ash and ground granulated blast furnace slag (GGBFS), can significantly help to reduce environmental impacts and resource consumption in the cement industry. Full article
Show Figures

Figure 1

Review
Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review
Clean Technol. 2023, 5(3), 881-900; https://doi.org/10.3390/cleantechnol5030044 - 06 Jul 2023
Viewed by 569
Abstract
Sodium-ion batteries (SIBs) have demonstrated noticeable development since the 2010s, being complementary to the lithium-ion technology in predominantly large-scale application niches. The projected SIB market growth will inevitably lead to the generation of tons of spent cells, posing a notorious issue for proper [...] Read more.
Sodium-ion batteries (SIBs) have demonstrated noticeable development since the 2010s, being complementary to the lithium-ion technology in predominantly large-scale application niches. The projected SIB market growth will inevitably lead to the generation of tons of spent cells, posing a notorious issue for proper battery lifecycle management, which requires both the establishment of a regulatory framework and development of technologies for recovery of valuable elements from battery waste. While lithium-ion batteries are mainly based on layered oxides and lithium iron phosphate chemistries, the variety of sodium-ion batteries is much more diverse, extended by a number of other polyanionic families (crystal types), such as NASICON (Na3V2(PO4)3), Na3V2(PO4)2F3−yOy, (0 ≤ y ≤ 2), KTiOPO4-type AVPO4X (A—alkali metal cation, X = O, F) and β-NaVP2O7, with all of them relying on vanadium and phosphorous—critical elements in a myriad of industrial processes and technologies. Overall, the greater chemical complexity of these vanadium-containing phosphate materials highlights the need for designing specific recycling approaches based on distinctive features of vanadium and phosphorus solution chemistry, fine-tuned for the particular electrodes used. In this paper, an overview of recycling methods is presented with a focus on emerging chemistries for SIBs. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

Article
Elementary Steps in Steady State Kinetic Model Approximation for the Homo-Heterogeneous Photocatalysis of Carbamazepine
Clean Technol. 2023, 5(3), 866-880; https://doi.org/10.3390/cleantechnol5030043 - 06 Jul 2023
Viewed by 299
Abstract
Elucidating physicochemical processes in the degradation of pollutants may optimize their removal from water sources. Although the photodegradation of carbamazepine (CBZ) in Advanced Oxidation Processes (AOPs) has been widely studied, there is no detailed report on the elementary steps of the kinetics. This [...] Read more.
Elucidating physicochemical processes in the degradation of pollutants may optimize their removal from water sources. Although the photodegradation of carbamazepine (CBZ) in Advanced Oxidation Processes (AOPs) has been widely studied, there is no detailed report on the elementary steps of the kinetics. This study proposes a set of elementary steps for the AOP of CBZ, combining short-wave ultraviolet radiation (UVC), a homogeneous reagent (H2O2), and a heterogeneous catalyst (TiO2), which includes the excitation of both reagents/catalysts by UVC photons, the adsorption of CBZ by the excited TiO2, or its oxidation by hydroxyl radicals. Assuming the steady-state approximation on the intermediate products (excited TiO2, CBZ-excited TiO2 complex, and hydroxyl radicals) leads to rate laws for the degradation of CBZ, in which UVC radiation, TiO2, and H2O2 are pseudo-first-order at all concentrations or intensities and have no direct influence on CBZ pseudo-order, whereas CBZ shifts from pseudo-first-order at low concentrations to pseudo-zero-order at high concentrations. Several experiments to test the mechanism were conducted by varying CBZ, H2O2, and TiO2 concentrations and UVC radiation intensities. The measured results indeed fit the suggested mechanism for the first three, but the irradiation intensity appears to shift the CBZ influence from pseudo-second- to pseudo-first-order with increased intensities. Part of the elementary steps were changed to fit the results. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Environmental Remediation)
Show Figures

Figure 1

Article
Treatment of Dark Humic Water Using Photocatalytic Advanced Oxidation (PAO) Processes under Visible and UV Light
Clean Technol. 2023, 5(3), 852-865; https://doi.org/10.3390/cleantechnol5030042 - 06 Jul 2023
Viewed by 346
Abstract
The aim of the study was to investigate the application of photocatalytic advanced oxidation (PAO) for the treatment of water contaminated with dark humic material from fynbos biome plants, which cannot be treated by conventional methods. The study used a fynbos species ( [...] Read more.
The aim of the study was to investigate the application of photocatalytic advanced oxidation (PAO) for the treatment of water contaminated with dark humic material from fynbos biome plants, which cannot be treated by conventional methods. The study used a fynbos species (Aspalathus linearis) to create a model wastewater that was compared with a brew made from black tea (Camellia sinensis). Two photocatalysts (TiO2 and ZnO) and three light sources (natural, halogen light, and UV light) were tested, with and without hydrogen peroxide. The treatment of the two teas by only photolysis was observed to be minimal. The study found that natural sunlight was not effective, but a combination of ZnO and halogen lamp exhibited the best performance, with a 60% degradation in 20 min under solar irradiation. The optimum catalyst concentration was identified as 10 g/L for both photocatalysts. The influence of some process parameters showed that a combination of an optimum dose of 5 mM H2O2 and solar radiation improved the performance of TiO2 from 16 to 47%. The photocatalytic reaction data were fitted to the pseudo first and second-order kinetic models in order to exploit the kinetic process of the photo-destruction reaction. The kinetic fits showed that the degradation reaction better adhered to the second-order kinetic model when only ZnO and solar radiation were applied, regardless of the tea type employed. The application of PAO in this novel and cost-effective way has potential for the abatement of contaminated water to potable water. The use of heterojunction photocatalysts could be explored in future research to further improve the process. Full article
(This article belongs to the Special Issue Decentralised Water Treatment Technologies)
Show Figures

Figure 1

Article
Mercury Removal from Mining Wastewater by Phytoaccumulation in Autochthonous Aquatic Plant Species
Clean Technol. 2023, 5(3), 839-851; https://doi.org/10.3390/cleantechnol5030041 - 27 Jun 2023
Viewed by 665
Abstract
Mining wastewater (MWW) can contain mercury in high concentrations. In this study, four autochthonous aquatic plant species (Eichhornia Crassipes—EC, Marsilea Quadrifolia—MQ, Ludwigia Helminthorrhiza—LH, and Lemna Minor—LM) were identified and tested for phytoaccumulation of total mercury (THg). To better [...] Read more.
Mining wastewater (MWW) can contain mercury in high concentrations. In this study, four autochthonous aquatic plant species (Eichhornia Crassipes—EC, Marsilea Quadrifolia—MQ, Ludwigia Helminthorrhiza—LH, and Lemna Minor—LM) were identified and tested for phytoaccumulation of total mercury (THg). To better study the accumulation phenomenon and macrophyte responses, this work has been divided into three phases, and pilot-scale reactors have been used to simulate real conditions. The results highlighted that, in case of 15 µgTHg,fed, the bioconcentration factor (BCF) was significantly higher in EC (19.04) and LH (18.41) with respect to MQ and LM (almost six times and two times higher, respectively). EC granted the best results in terms of THg accumulation (50.90%) and lower evapotranspiration of THg phenomenon with respect to LH. A significant decrease of the BCF (from 23.45 to 21.98) and an increase of the TF (from 0.23 up to 0.73) after 42 d highlighted that a breaking-time in terms of THg accumulation was reached due to the deterioration of the roots. In terms of the kinetics of THg removal by bioaccumulation, an HLT of 69.31 d was found, which is more than the breaking-time of the EC system, proving that a periodic replacement of exhausted macrophytes is required to obtain a higher percentage of THg removal. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

Article
Metal-Supported TiO2/SiO2 Core-Shell Nanosphere Photocatalyst for Efficient Sunlight-Driven Methanol Degradation
Clean Technol. 2023, 5(3), 828-838; https://doi.org/10.3390/cleantechnol5030040 - 27 Jun 2023
Viewed by 368
Abstract
The development of novel and active photocatalysts to industrialize photocatalysis technology is still a challenging task. In this work, a novel method is presented to prepare TiO2/SiO2 NSs by covering SiO2 nanospheres (NSs) with titanate-nanodiscs (TNDs) followed by calcination. [...] Read more.
The development of novel and active photocatalysts to industrialize photocatalysis technology is still a challenging task. In this work, a novel method is presented to prepare TiO2/SiO2 NSs by covering SiO2 nanospheres (NSs) with titanate-nanodiscs (TNDs) followed by calcination. In this regard, SiO2 NSs are first synthesized and then TNDs are deposited on the SiO2 NSs using a layer-by-layer deposition technique. The morphology of the prepared samples is analyzed via SEM and TEM analyses before and after the deposition. The analysis of metal (Cu, Pt, and Ni) loading on calcined TNDs/SiO2 NSs reveals the highest specific surface area (109 m2/g), absorption wavelength extension (up to 420 nm), and photocatalytic activity for the Cu-loaded sample. In addition, studying the effect of metal content shows that loading 3% Cu leads to the highest photocatalytic activity. Finally, it is demonstrated that H2S treatment can improve the photocatalytic activity by around 15%. These findings suggest the calcined TNDs/SiO2 NSs are a versatile photocatalyst with potential applications in other processes such as hydrogen production and CO2 valorization. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Environmental Remediation)
Show Figures

Graphical abstract

Review
Offshore Electrical Grid Layout Optimization for Floating Wind—A Review
Clean Technol. 2023, 5(3), 791-827; https://doi.org/10.3390/cleantechnol5030039 - 26 Jun 2023
Viewed by 501
Abstract
Electrical grid layout optimization should consider the placements of turbines and substations and include effects such as wake losses, power losses in cables, availability of different cable types, reliability-based power losses and operational/decommissioning cost besides the initial investment cost. Hence, optimizing the levelized [...] Read more.
Electrical grid layout optimization should consider the placements of turbines and substations and include effects such as wake losses, power losses in cables, availability of different cable types, reliability-based power losses and operational/decommissioning cost besides the initial investment cost. Hence, optimizing the levelized cost of energy is beneficial capturing long-term effects. The main contribution of this review paper is to identify the current works and trends on electrical layout optimization for offshore wind farms as well as to analyze the applicability of the found optimization approaches to commercial-scale floating wind farms which have hardly been investigated so far. Considering multiple subproblems (i.e., micrositing and cabling), simultaneous or nested approaches are advantageous as they avoid sequential optimization of the individual problems. To cope with this combinatorial problem, metaheuristics seems to offer optimal or at least close-to-optimal results while being computationally much less expensive than deterministic methods. It is found that floating wind brings new challenges which have not (or only insufficiently) been considered in present optimization works. This will also be reflected in a higher complexity and thus influence the suitability of applicable optimization techniques. New aspects include the mobility of structures, the configurations and interactions of dynamic cables and station-keeping systems, the increased likelihood of prevailing heterogeneous seabeds introducing priority zones regarding anchor and riser installation, the increased importance of reliability and maintainability due to stricter weather limits, and new floating specific wind farm control methods to reduce power losses. All these facets are crucial to consider when thoroughly optimizing the levelized cost of energy of commercial-scale floating offshore wind farms. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

Review
Moving towards Greener Road Transportation: A Review
Clean Technol. 2023, 5(2), 766-790; https://doi.org/10.3390/cleantechnol5020038 - 07 Jun 2023
Viewed by 844
Abstract
Road transportation accounts for about 20% of the total GHG emissions in the EU. Nowadays, the substitution of conventional fossil fuel-based ICEs with electric engines, or their hybridization, operating along with Energy Storage Systems, seems to be the most appropriate measure to achieve [...] Read more.
Road transportation accounts for about 20% of the total GHG emissions in the EU. Nowadays, the substitution of conventional fossil fuel-based ICEs with electric engines, or their hybridization, operating along with Energy Storage Systems, seems to be the most appropriate measure to achieve reductions in both fuel consumption and GHGs. However, EVs encounter crucial challenges, such as long charging time and limited driving range. Hence, the transition to the mass adoption of EVs requires considerable effort and time. However, significant steps have been taken in the hybridization of road vehicles, with the aid of renewables and energy recovery/saving systems. In this context, this paper presents a comprehensive literature review of modern green technologies for GHG reduction that are applicable to road transportation, such as on-vehicle energy harvesting and recovery (e.g., thermal, kinetic, etc.) systems and the incorporation of RES into EV charging stations. The impact of road vehicles on the environment is discussed in detail, along with the EU roadmap towards the decarbonization of transportation. Next, methods and techniques for fuel consumption and GHG reduction are systematically presented and categorized into on-vehicle and off-vehicle ones. Finally, a future outlook on more environmentally friendly road transportation is presented. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

Article
Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method
Clean Technol. 2023, 5(2), 744-765; https://doi.org/10.3390/cleantechnol5020037 - 02 Jun 2023
Viewed by 656
Abstract
Installation of new wind farms in areas such as the north coast of the Yucatan peninsula is of vital importance to face the local energy demand. For the proper functioning of these facilities it is important to perform wind data analysis, the data [...] Read more.
Installation of new wind farms in areas such as the north coast of the Yucatan peninsula is of vital importance to face the local energy demand. For the proper functioning of these facilities it is important to perform wind data analysis, the data having been collected by anemometers, and to consider the particular characteristics of the studied area. However, despite the great development of anemometers, forecasting methods are necessary for the optimal harvesting of wind energy. For this reason, this study focuses on developing an enhanced wind forecasting method that can be applied to wind data from the north coast of the Yucatan peninsula (in general, any type of data). Thus, strategies can be established to generate a greater amount of energy from the wind farms, which supports the local economy of this area. Four variants have been developed based on the traditional double and single exponential methods. Furthermore, these methods were compared to the experimental data to obtain the optimal forecasting method for the Yucatan area. The forecasting method with the highest performance has obtained an average relative error of 7.9510% and an average mean error of 0.3860 m/s. Full article
(This article belongs to the Special Issue Recent Advances in Wind Energy)
Show Figures

Figure 1

Project Report
Alternative Fuel Substitution Improvements in Low NOx In-Line Calciners
Clean Technol. 2023, 5(2), 713-743; https://doi.org/10.3390/cleantechnol5020036 - 01 Jun 2023
Viewed by 604
Abstract
The process of making cement clinker uses a lot of energy and produces a lot of pollution. Currently, cement companies use a combination of traditional fossil fuels and alternative fuels (AF-Fuels) to lower their energy consumption and environmental footprint by improving the pyro-system. [...] Read more.
The process of making cement clinker uses a lot of energy and produces a lot of pollution. Currently, cement companies use a combination of traditional fossil fuels and alternative fuels (AF-Fuels) to lower their energy consumption and environmental footprint by improving the pyro-system. In a calciner, AF-Fuels can reach a thermal substitution rate (TSR) of up to 80–100%. However, a kiln burner can only achieve a TSR of 50–60%. High TSR values have been provided by improvements in multi-channel burners, proper AF-Fuel feeding point setups, and various AF pre-combustion methods. Significant modeling of the calciner burner and system has also improved TSRs. However, the cement industry has encountered operational problems such as kiln coating build-up, reduced flame temperatures, higher specific heat consumption, and incomplete combustion. There is growing interest in waste substitution, a promising source of AF-Fuel that needs to be integrated into the current cement plant design to solve the calciner operational problems of the cement industry. This study discusses the latest developments and different experimental and modeling studies performed on the direct burning/co-firing of AF-Fuel in the cement industry as well as the incorporation of gasification in cement manufacturing. Based on this, a technically and environmentally improved solution is proposed. The characteristics of both approaches towards pre-calciner function and optimization are critically assessed. The many in-line cement calciner integration technologies and their various configurations for the long-term problems of cement plants are discussed. This project report also focuses on the necessity of creating appropriate calciner models for forecasting calciner production based on various AF-Fuels and their feeding positions in the calciner. Full article
Show Figures

Figure 1

Article
CO2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles
Clean Technol. 2023, 5(2), 696-712; https://doi.org/10.3390/cleantechnol5020035 - 01 Jun 2023
Viewed by 974
Abstract
During the last few years, electric and hydrogen vehicles have become an alternative to cars that use internal combustion engines. The number of electric and hydrogen vehicles sold has increased due to support from local governments and because car manufacturers will stop the [...] Read more.
During the last few years, electric and hydrogen vehicles have become an alternative to cars that use internal combustion engines. The number of electric and hydrogen vehicles sold has increased due to support from local governments and because car manufacturers will stop the production of internal combustion engines in the near future. The emissions of these vehicles while being driven are zero, but they still have an impact on the environment due to their fuel. In this article, an analysis of carbon dioxide (CO2) emissions for two types of vehicles: battery electric vehicles (BEVs) powered by electricity and fuel cell electric vehicles (FCEVs) powered by hydrogen, is presented. The analysis considers different values for the mix of power generation and hydrogen production options in comparison to other studies. The CO2 emissions were calculated and compared for the two types of vehicles. The results show that the CO2 emissions of BEVs are lower when compared to FCEVs if the hydrogen is obtained from pollutant sources and is higher if the hydrogen is obtained from nuclear power and renewable energy sources. When compared to conventional combustion engine vehicles, BEVs have lower CO2 emissions, while the emissions of FCEVs are dependent on the hydrogen production method. Full article
Show Figures

Figure 1

Back to TopTop