Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (778)

Search Parameters:
Journal = Atoms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Bose Polaron in a One-Dimensional Lattice with Power-Law Hopping
Atoms 2023, 11(8), 110; https://doi.org/10.3390/atoms11080110 - 06 Aug 2023
Viewed by 287
Abstract
Polarons, quasiparticles resulting from the interaction between an impurity and the collective excitations of a medium, play a fundamental role in physics, mainly because they represent an essential building block for understanding more complex many-body phenomena. In this manuscript, we study the spectral [...] Read more.
Polarons, quasiparticles resulting from the interaction between an impurity and the collective excitations of a medium, play a fundamental role in physics, mainly because they represent an essential building block for understanding more complex many-body phenomena. In this manuscript, we study the spectral properties of a single impurity mixed with identical bosons in a one-dimensional lattice with power-law hopping. In particular, based on the so-called T-matrix approximation, we show the existence of well-defined quasiparticle branches for several tunneling ranges and for both repulsive and attractive impurity-boson interactions. Furthermore, we demonstrate the persistence of the attractive polaron branch when the impurity-boson bound state is absorbed into the two-body continuum and that the attractive polaron becomes more robust as the range of the hopping increases. The results discussed here are relevant for the understanding of the equilibrium properties of quantum systems with power-law interactions. Full article
(This article belongs to the Special Issue Recent Trends on Quantum Fluctuations in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

Article
Decay of Persistent Currents in Annular Atomic Superfluids
Atoms 2023, 11(8), 109; https://doi.org/10.3390/atoms11080109 - 27 Jul 2023
Viewed by 186
Abstract
We investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results with the 6Li experiment at LENS data. We theoretically model the optical phase-imprinting [...] Read more.
We investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results with the 6Li experiment at LENS data. We theoretically model the optical phase-imprinting technique employed to experimentally excite finite-circulation states in the Bose–Einstein condensation regime, accounting for imperfections of the optical gradient imprinting profile. By comparing simulations of this realistic protocol to an ideal imprinting, we show that the introduced density excitations arising from imperfect imprinting are mainly responsible for limiting the maximum reachable winding number wmax in the superfluid ring. We also investigate the effect of a point-like obstacle with variable potential height V0 on the decay of circulating supercurrents. For a given obstacle height, a critical circulation wc exists, such that for an initial circulation w0 larger than wc the supercurrent decays through the emission of vortices, which cross the superflow and thus induce phase slippage. Higher values of the obstacle height V0 further favor the entrance of vortices, thus leading to lower values of wc. Furthermore, the stronger vortex-defect interaction at higher V0 leads to vortices that propagate closer to the center of the ring condensate. The combination of both these effects leads to an increase in the supercurrent decay rate for increasing w0, in agreement with experimental observations. Full article
(This article belongs to the Special Issue Recent Trends on Quantum Fluctuations in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

Article
Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer
Atoms 2023, 11(7), 108; https://doi.org/10.3390/atoms11070108 - 24 Jul 2023
Viewed by 359
Abstract
For the realization of an optical nuclear clock, the first isomeric excited state of thorium-229 (229mTh) is currently the only candidate due to its exceptionally low-lying excitation energy (8.338±0.024 eV). Such a nuclear clock holds promise not only [...] Read more.
For the realization of an optical nuclear clock, the first isomeric excited state of thorium-229 (229mTh) is currently the only candidate due to its exceptionally low-lying excitation energy (8.338±0.024 eV). Such a nuclear clock holds promise not only to be a very precise metrological device but also to extend the knowledge of fundamental physics studies, such as dark matter research or variations in fundamental constants. Considerable progress was achieved in recent years in characterizing 229mTh from its first direct identification in 2016 to the only recent observation of the long-sought-after radiative decay channel. So far, nuclear resonance as the crucial parameter of a nuclear frequency standard has not yet been determined with laser-spectroscopic precision. To determine another yet unknown basic property of the thorium isomer and to further specify the linewidth of its ground-state transition, a measurement of the ionic lifetime of the isomer is in preparation. Theory and experimental investigations predict the lifetime to be 103–104 s. To precisely target this property using hyperfine structure spectroscopy, an experimental setup is currently being commissioned at LMU Munich. It is based on a cryogenic Paul trap providing long-enough storage times for 229mTh ions, that will be sympathetically cooled with 88Sr+. This article presents a concept for an ionic lifetime measurement and discusses the laser-optical part of a setup specifically developed for this purpose. Full article
(This article belongs to the Special Issue Over a Century of Nuclear Isomers: Challenges and Prospects)
Show Figures

Figure 1

Article
Exponentially Correlated Hylleraas–Configuration Interaction Studies of Atomic Systems. III. Upper and Lower Bounds to He-Sequence Oscillator Strengths for the Resonance 1S→1P Transition
Atoms 2023, 11(7), 107; https://doi.org/10.3390/atoms11070107 - 22 Jul 2023
Viewed by 343
Abstract
The exponentially correlated Hylleraas–configuration interaction method (E-Hy-CI) is a generalization of the Hylleraas–configuration interaction method (Hy-CI) in which the single rij of an Hy-CI wave function is generalized to a form of the generic type [...] Read more.
The exponentially correlated Hylleraas–configuration interaction method (E-Hy-CI) is a generalization of the Hylleraas–configuration interaction method (Hy-CI) in which the single rij of an Hy-CI wave function is generalized to a form of the generic type rijνijeωijrij. This work continues the exploration, begun in the first two papers in this series (on the helium atom and on ground and excited S states of Li II), of whether wave functions containing both linear and exponential rij factors converge more rapidly than either one alone. In the present study, we examined not only 1s2 1S states but 1s2p 1P states for the He I, Li II, Be III, C V and O VII members of the He isoelectronic sequence as well. All 1P energies except He I are better than previous results. The wave functions obtained were used to calculate oscillator strengths, including upper and lower bounds, for the He-sequence lowest (resonance) 1S1P transition. Interpolation techniques were used to make a graphical study of the oscillator strength behavior along the isoelectronic sequence. Comparisons were made with previous experimental and theoretical results. The results of this study are oscillator strengths for the 1s2 1S 1s2p1P He isoelectronic sequence with rigorous non-relativistic quantum mechanical upper and lower bounds of (0.001–0.003)% and probable precision ≤ 0.0000003, and were obtained by extending the previously developed E-Hy-CI formalism to include the calculation of transition moments (oscillator strengths). Full article
(This article belongs to the Special Issue Recent Advances in Atomic and Molecular Spectroscopy)
Show Figures

Figure 1

Article
Towards Understanding Incomplete Fusion Reactions at Low Beam Energies: Modified Sum Rule Model
Atoms 2023, 11(7), 106; https://doi.org/10.3390/atoms11070106 - 21 Jul 2023
Viewed by 286
Abstract
We investigated the enhanced production of nuclei formed via incomplete fusion (ICF) reactions near and above the Coulomb barrier energies (5–8 MeV/A). The cross-sections of the evaporation residues formed in the reactions—11B+124Sn, 10B+124Sn and 11B+ [...] Read more.
We investigated the enhanced production of nuclei formed via incomplete fusion (ICF) reactions near and above the Coulomb barrier energies (5–8 MeV/A). The cross-sections of the evaporation residues formed in the reactions—11B+124Sn, 10B+124Sn and 11B+122Sn—were measured using off-line gamma-ray spectrometry. The sum rule model (SRM) by Wilczyński et al. predicted the cross-section values too low compared to our experimental results. In earlier studies, the same model has been very successful in explaining ICF reactions at high beam energies (>10 MeV/A). We, therefore, modified the SRM, specifically incorporating the energy dependence in the definition of critical angular momentum cr. The resulting modified SRM gave an improved theoretical estimate for the reactions we studied. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

Review
On Invariant Vectors in the Presence of Electric and Magnetic Fields
Atoms 2023, 11(7), 105; https://doi.org/10.3390/atoms11070105 - 20 Jul 2023
Viewed by 241
Abstract
In this non-exhaustive review, we discuss the importance of invariant vectors in atomic physics, such as the Laplace–Runge–Lenz vector, the Redmond vector in the presence of an electric field, the Landau–Avron–Sivardièrevector when the system is subject to a magnetic field, and the supergeneralized [...] Read more.
In this non-exhaustive review, we discuss the importance of invariant vectors in atomic physics, such as the Laplace–Runge–Lenz vector, the Redmond vector in the presence of an electric field, the Landau–Avron–Sivardièrevector when the system is subject to a magnetic field, and the supergeneralized Runge–Lenz vector for the two-center problem. The application to the Stark and Zeeman effects are outlined. The existence of constants of motion in the charge-dyon system is also briefly mentioned. Full article
Article
Role of Simple Spatial Gradient in Reinforcing the Accuracy of Temperature Determination of HED Plasma via Spectral Line-Area Ratios
Atoms 2023, 11(7), 104; https://doi.org/10.3390/atoms11070104 - 12 Jul 2023
Viewed by 367
Abstract
We report on the simulation of temperature gradients in tamped NaFMgO target-foil plasma, heated and backlit by z-pinch dynamic hohlraum radiation. Our approach compares the spectroscopic output of a collisional-radiative model (prismspect) with soft X-ray absorption spectra collected on Sandia National [...] Read more.
We report on the simulation of temperature gradients in tamped NaFMgO target-foil plasma, heated and backlit by z-pinch dynamic hohlraum radiation. Our approach compares the spectroscopic output of a collisional-radiative model (prismspect) with soft X-ray absorption spectra collected on Sandia National Laboratories’ (SNL) Z Pulsed Power Facility. The pattern of minimum χ2 is seen to agree with an efficient, three-parameter model. Results show that a negligible gradient in electron temperature Te is consistent with experimental data, justifying the assumptions of previous work. The predicted sensitivity of line spectra to the gradient-aligned profile of Te is documented for each spectral feature, so that the line-area ratio between a pair of spectral features may be assessed as a proxy for the existence and quantification of such gradients. Full article
Show Figures

Figure 1

Article
Role of Gas Pressure in Quasi-Phase Matching in High Harmonics Driven by Two-Color Laser Field
Atoms 2023, 11(7), 103; https://doi.org/10.3390/atoms11070103 - 07 Jul 2023
Viewed by 326
Abstract
The results of a study on the effect of pressure in a medium consisting of a set of gas jets separated by vacuum gaps, interacting with two-color laser fields formed by the fundamental and the second harmonics of a laser, are presented herein. [...] Read more.
The results of a study on the effect of pressure in a medium consisting of a set of gas jets separated by vacuum gaps, interacting with two-color laser fields formed by the fundamental and the second harmonics of a laser, are presented herein. It has been demonstrated that a decrease in pressure leads to a shift in the region of harmonics where quasi-phase matching (QPM) occurs towards shorter wavelength radiation, accompanied by an increase in the efficiency of amplification of these harmonics. A feature of this process is the identical power-law character of the shift in the region and the increase in the efficiency of harmonic QPM amplification. Additionally, the study presents the results of the effect of inaccurately setting the width of the gas jets on the shape of the spectrum of harmonic QPM amplification. Full article
(This article belongs to the Special Issue Recent Progress in Strong-Field Atomic and Molecular Physics)
Show Figures

Figure 1

Article
Variational Approaches to Two-Dimensionally Symmetry-Broken Dipolar Bose–Einstein Condensates
Atoms 2023, 11(7), 102; https://doi.org/10.3390/atoms11070102 - 06 Jul 2023
Viewed by 375
Abstract
It has been shown that quantum fluctuations in dipolar Bose–Einstein condensates (BECs) lead to a stabilisation against collapse, thereby providing access to a range of states with different symmetries. In this paper, we discuss variational approaches to approximately determine the phase diagrams for [...] Read more.
It has been shown that quantum fluctuations in dipolar Bose–Einstein condensates (BECs) lead to a stabilisation against collapse, thereby providing access to a range of states with different symmetries. In this paper, we discuss variational approaches to approximately determine the phase diagrams for dipolar BECs that are trapped along the dipolar orientation and otherwise infinite in the perpendicular direction (thermodynamic limit). The two-dimensional symmetry breaking occurs in the plane perpendicular to the polarisation axis. We show in detail how to derive approximate expressions that are valid in a region where modulations to an otherwise unmodulated perfect superfluid emerge gradually with a small modulation amplitude and compare the results to rigorous numerics. Full article
(This article belongs to the Special Issue Recent Trends on Quantum Fluctuations in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

Article
Mean-Field Description of Cooperative Scattering by Atomic Clouds
Atoms 2023, 11(7), 101; https://doi.org/10.3390/atoms11070101 - 29 Jun 2023
Viewed by 312
Abstract
We present analytic expressions for the scattering of light by an extended atomic cloud. We obtain the solution for the mean-field excitation of different atomic spherical distributions driven by a uniform laser, including the initial build up, the steady state and the decay [...] Read more.
We present analytic expressions for the scattering of light by an extended atomic cloud. We obtain the solution for the mean-field excitation of different atomic spherical distributions driven by a uniform laser, including the initial build up, the steady state and the decay after the laser is switched off. We show that the mean-field model does not describe subradiant scattering due to the negative interference of the photons scattered by N discrete atoms. Full article
(This article belongs to the Section Cold Atoms, Quantum Gases and Bose-Einstein Condensation)
Show Figures

Figure 1

Communication
Scattering of X-ray Ultrashort Laser Pulses on Bound Electrons in Dense Plasma
Atoms 2023, 11(6), 100; https://doi.org/10.3390/atoms11060100 - 16 Jun 2023
Viewed by 430
Abstract
We considered the resonance scattering of ultrashort laser pulses (USLP) on the bound electrons of hydrogen-like ions in a dense plasma. A process description was proposed in terms of full scattering probability during the time of pulse action. Dense plasma’s effect was demonstrated [...] Read more.
We considered the resonance scattering of ultrashort laser pulses (USLP) on the bound electrons of hydrogen-like ions in a dense plasma. A process description was proposed in terms of full scattering probability during the time of pulse action. Dense plasma’s effect was demonstrated at the resonance scattering cross-section spectrum, and the probability dependence on USLP carrier frequency and duration was obtained for the cases of isolated ions and ions in a dense plasma. Full article
(This article belongs to the Special Issue Atomic Physics in Dense Plasmas)
Show Figures

Figure 1

Communication
Measurement of the Tensor-Analyzing Power Component T20 for Incoherent Negative Pion Photoproduction on a Deuteron
Atoms 2023, 11(6), 99; https://doi.org/10.3390/atoms11060099 - 15 Jun 2023
Viewed by 360
Abstract
New results for the T20-component of the tensor-analyzing power of the incoherent negative pion photoproduction are presented. The experiment was performed for the electron beam energy of 800 MeV at the VEPP-3 storage ring in 2021. To extract the T20 [...] Read more.
New results for the T20-component of the tensor-analyzing power of the incoherent negative pion photoproduction are presented. The experiment was performed for the electron beam energy of 800 MeV at the VEPP-3 storage ring in 2021. To extract the T20-component, we used asymmetry with respect to the change in the sign of the tensor polarization of the deuteron target. Identification of the reaction events was carried out by the detection of two protons in coincidence. Experimental data were compared with the results of statistical simulation, considering the interaction between the NN and πN subsystems in the final state of the reaction. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

Review
Neutron Interferometer Experiments Studying Fundamental Features of Quantum Mechanics
Atoms 2023, 11(6), 98; https://doi.org/10.3390/atoms11060098 - 15 Jun 2023
Viewed by 540
Abstract
Quantum theory provides us with the best account of microscopic components of matter as well as of radiation. It was introduced in the twentieth century and has experienced a wide range of success. Although the theory’s probabilistic predictions of final experimental outcomes is [...] Read more.
Quantum theory provides us with the best account of microscopic components of matter as well as of radiation. It was introduced in the twentieth century and has experienced a wide range of success. Although the theory’s probabilistic predictions of final experimental outcomes is found to be correct with high precision, there is no general consensus regarding what is actually going on with a quantum system “en route”, or rather the perceivable intermediate behavior of a quantum system, e.g., the particle’s behavior in the double-slit experiment. Neutron interferometry using single silicon perfect crystals is established as a versatile tool to test fundamental phenomena in quantum mechanics, where an incident neutron beam is coherently split in two or three beam paths with macroscopic separation of several centimeters. Here, we present quantum optical experiments with these matter-wave interferometers, studying the effect of the quantum Cheshire Cat in some variants, the neutron’s presence in the paths of the interferometer as well as the direct test of a commutation relation. To reduce disturbances induced by the measurement, the interaction strength is lessened and so-called weak interactions are exploited by employing pre- and post-selection procedures. All results of the experiments confirm the predictions of quantum theory; the observed behaviors of the neutron between the pre- and post-selection in space and time emphasize striking and counter-intuitive aspects of quantum theory. Full article
Show Figures

Figure 1

Article
Pulse Cycle Dependent Nondipole Effects in Above-Threshold Ionization
Atoms 2023, 11(6), 97; https://doi.org/10.3390/atoms11060097 - 12 Jun 2023
Viewed by 557
Abstract
In this study, we employ strong field approximation (SFA) to investigate the influence of the number of pulse cycles on above-threshold ionization within the framework of nondipole theory. The SFA enables the analysis of the ionization process under the dominance of the electric [...] Read more.
In this study, we employ strong field approximation (SFA) to investigate the influence of the number of pulse cycles on above-threshold ionization within the framework of nondipole theory. The SFA enables the analysis of the ionization process under the dominance of the electric field, compared to other factors such as the binding potential of an atom. Nondipole effects, including higher-order multipole fields, can significantly impact ionization dynamics. However, the interaction between nondipole effects and pulse cycles remains unclear. Therefore, we investigate the pulse cycle dependence of ionization and examine peak shifts in Kr and Ar atoms. Our findings have implications for comprehensively understanding the effects of electromagnetic fields on electron behavior. The insights gained from this study provide valuable guidance for future research in strong field ionization. Full article
(This article belongs to the Special Issue Recent Progress in Strong-Field Atomic and Molecular Physics)
Show Figures

Figure 1

Article
Structure and Bonding Patterns in C5H4 Isomers: Pyramidane, Planar Tetracoordinate Carbon, and Spiro Molecules
Atoms 2023, 11(6), 96; https://doi.org/10.3390/atoms11060096 - 10 Jun 2023
Viewed by 804
Abstract
We have theoretically investigated nine unusual isomers of the molecular formula C5H4 using coupled cluster (CC) and density functional theory (DFT) methods. These molecules possess non-classical structures consisting of two pyramidanes, three planar tetracoordinate carbon (ptC), and four [...] Read more.
We have theoretically investigated nine unusual isomers of the molecular formula C5H4 using coupled cluster (CC) and density functional theory (DFT) methods. These molecules possess non-classical structures consisting of two pyramidanes, three planar tetracoordinate carbon (ptC), and four spiro types of isomers. Both the pyramidanes (tetracyclo-[2.1.0.01,3.02,5]pentane; py-1 and tricyclo-[2.1.0.02,5]pentan-3-ylidene; py-2) are minima on the potential energy surface (PES) of C5H4. Among the three isomers containing ptC, (SP4)-spiro [2.2]pent-1-yne (ptC-2) is a minimum, whereas isomer, (SP4)-spiro [2.2]pent-1,4-diene (ptC-1) is a fourth-order saddle point, and (SP4)-sprio[2.2]pent-1,4-diylidene (ptC-3) is a transition state. The corresponding spiro isomers spiro[2.2]pent-1,4-diene (spiro-1), sprio[2.2]pent-1,4-diylidene (spiro-3) and spiro[2.2]pent-4-en-1-ylidene (spiro-4) are local minima, except spiro[2.2]pent-1-yne (spiro-2), which is a second-order saddle point. All relative energies are calculated with respect to the global minimum (pent-1,3-diyne; 1) at the CCSD(T)/cc-pVTZ level of theory. Quantum chemical calculations have been performed to analyze the bonding and topological configurations for all these nine isomers at the B3LYP/6-311+G(d,p) level of theory for a better understanding of their corresponding electronic structures. ptC-2 was found to be thermodynamically more stable than its corresponding spiro counterpart (spiro-2) and possesses a high dipole moment (μ = 4.64 D). The stability of the ptC structures with their higher spin states has been discussed. Full article
(This article belongs to the Special Issue Planar Tetracoordinate Carbon—Fifty Years and Beyond)
Show Figures

Figure 1

Back to TopTop