Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Journal = Seeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Seed Morphology of Three Neotropical Orchid Species of the Lycaste Genus
Seeds 2023, 2(3), 331-339; https://doi.org/10.3390/seeds2030025 - 07 Aug 2023
Viewed by 191
Abstract
Neotropical orchids are vulnerable to extinction due to overharvesting, habitat destruction and climate change. However, a basic understanding of orchid seed biology to support conservation efforts is still lacking for most species. Seed morphology is linked to plant adaptation and evolution, influencing seed [...] Read more.
Neotropical orchids are vulnerable to extinction due to overharvesting, habitat destruction and climate change. However, a basic understanding of orchid seed biology to support conservation efforts is still lacking for most species. Seed morphology is linked to plant adaptation and evolution, influencing seed dispersal, dormancy, longevity, and germination, which are valuable traits for conservation. In this study, we characterized and compared the morphological traits of seed capsules (size, shape, and colour) and seeds (seed and embryo shape and size and internal airspace volume) for three epiphytic Neotropical orchid species of the genus Lycaste native to Guatemala: L. cochleata, L. lasioglossa, and L. virginalis. The three species show qualitative similarities in seed capsule colour and appearance and in seed morphology (i.e., scobiform oval-shaped seeds and prolate-spheroid embryos). All species have small-sized seeds (length of L. cochleata: 210 µm, L. lasioglossa: 230 µm, and L. virginalis: 260 µm), with proportionally large embryos (length of L. cochleata: 140 µm, L. lasioglossa: 120 µm, and L. virginalis: 150 µm) and an internal air-space volume that occupies less than half of the seed (L. cochleata: 17%, L. lasioglossa: 42%, and L. virginalis: 30%). This finding is consistent with previous reports for other epiphytic orchid species, which typically have lower air volumes than terrestrial orchids. These differences are likely a result of evolutionary changes associated with different habits and may influence seed dispersal. We also found some significant differences in seed morphology between the studied species, but their taxonomic, biological, and ecological relevance remain to be elucidated. More comparative studies, including on other Lycaste species with different habits, are needed to explore relationships between seed morphology, taxonomy, biology, and ecology in this genus to support its conservation. Full article
Show Figures

Figure 1

Article
Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit
Seeds 2023, 2(3), 318-330; https://doi.org/10.3390/seeds2030024 - 03 Aug 2023
Viewed by 197
Abstract
The aim of this study was to find the optimal gibberellic acid (GA3) and copper sulfate (CuSO4·5H2O) concentrations to reduce the number of seeds and increase the quality of Bac Son mandarin fruit. In experiment 1, the [...] Read more.
The aim of this study was to find the optimal gibberellic acid (GA3) and copper sulfate (CuSO4·5H2O) concentrations to reduce the number of seeds and increase the quality of Bac Son mandarin fruit. In experiment 1, the control plants (without GA3) were sprayed with water, and the remaining plants were sprayed with different concentrations of GA3 (50, 75, 100, or 125 ppm). In experiment 2, the control plants (without CuSO4·5H2O) were sprayed with water, and the remaining plants were sprayed with different concentrations of CuSO4·5H2O (50, 75, 100, or 125 ppm). Spraying GA3 at 100 ppm in 2018 produced the lowest seed number and the highest theoretical yield. In 2019, spraying GA3 led to a lower seed number and a higher actual yield compared with the control. Similarly, spraying CuSO4·5H2O significantly reduced the number of seeds/fruit and significantly increased the theoretical yield in 2018. In 2019, the total number of seeds/fruit was significantly lower in the CuSO4·5H2O treatments than in the control. Importantly, both GA3 and CuSO4·5H2O treatments did not adversely affect the fruit’s biochemical parameters or yield. These findings demonstrate that spraying GA3 or CuSO4·5H2O at a certain concentration can effectively reduce the number of seeds per fruit in Bac Son mandarin without compromising fruit quality or yield. Full article
Communication
Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae
Seeds 2023, 2(3), 309-317; https://doi.org/10.3390/seeds2030023 - 25 Jul 2023
Viewed by 205
Abstract
Physical dormancy (PY) due to a water-impermeable seed/fruit coat is one of the characteristic features of many species of Fabaceae; however, the timing and context of the evolution of this trait are poorly understood. In this investigation, fossil and molecular data are used [...] Read more.
Physical dormancy (PY) due to a water-impermeable seed/fruit coat is one of the characteristic features of many species of Fabaceae; however, the timing and context of the evolution of this trait are poorly understood. In this investigation, fossil and molecular data are used to constrain the timing of the evolution of PY. The phylogenetic reconstruction programs GB-to-TNT and BEAUTi/BEAST are used to create chloroplast gene-based (rbcL and matK) phylogenies of taxa with well-represented fossil records. PY and non-dormancy are mapped to the terminals of the phylogeny, and ancestral states are reconstructed using parsimony. The initial evolution of PY in Fabaceae is reconstructed to have occurred sometime in the interval between divergence from Polygalaceae (late Campanian) to the diversification of crown-group Fabaceae (late Paleocene) when Fabaceae is known to have undergone multiple whole genome duplication (WGD) events across the Cretaceous/Paleogene (K/Pg) boundary. As in Nelumbo, another taxon with PY, Fabaceae may have developed PY in association with climatic change and WGD across the K/Pg boundary. The evolution of PY in association with WGD at the K/Pg boundary is an intriguing hypothesis that requires further investigation. Full article
Show Figures

Figure 1

Review
Five Important Seeds in Traditional Medicine, and Pharmacological Benefits
Seeds 2023, 2(3), 290-308; https://doi.org/10.3390/seeds2030022 - 14 Jul 2023
Viewed by 364
Abstract
Knowledge about the pharmacological benefits of different seeds is an important factor for the cultivation and application of medicinal herbs and plants. The seeds of medicinal plants are stores of valuable and active secondary metabolites that have been commercially and economically beneficial and [...] Read more.
Knowledge about the pharmacological benefits of different seeds is an important factor for the cultivation and application of medicinal herbs and plants. The seeds of medicinal plants are stores of valuable and active secondary metabolites that have been commercially and economically beneficial and helpful for medicine and pharmacy. The major parameter of reproduction and the preservation of plants are seeds, which have a functional role in the distribution and establishment of plants in different regions. Five important seeds that have tremendous medicinal and pharmacological benefits are anise, basil, borage, cilantro, and chamomile. Anise seed is used as a spice, either whole or ground, and its essential oil and extract are also obtained from the seeds. Basil seeds have a long history of usage in Chinese and Ayurvedic medicine, and they are a good source of minerals, are high in fiber (including pectin), and are rich is flavonoids and other polyphenols. Borage seed oil is used for skin disorders, such as seborrheic dermatitis, atopic dermatitis, and neurodermatitis. Coriander is an annual herb that is part of the Apiaceae family, and the seeds are rich in iron, zinc, copper, and essential minerals, which can decrease bad cholesterol and improve good cholesterol in the body. Chamomile can be considered for the treatment of insomnia, hemorrhoids, anxiety, and diarrhea, and it may help with wound healing and skin irritation. Keyword searches for Anise, Seed, Basil, Borage, Cilantro, Chamomile, Seed biology, Traditional medicinal science, and seed anatomy were performed using Scopus, Web of Science, PubMed, and Google scholar. The aim of this article review is to survey the pharmacological and health benefits of the seeds of the five aforementioned important medicinal plants. Full article
Show Figures

Figure 1

Article
Ectopic Expression of AtYUC8 Driven by GL2 and TT12 Promoters Affects the Vegetative Growth of Arabidopsis
Seeds 2023, 2(3), 278-289; https://doi.org/10.3390/seeds2030021 - 13 Jul 2023
Viewed by 251
Abstract
Auxin plays an essential role in regulating Arabidopsis growth and development. YUCCA (YUC) family genes encode flavin monooxygenases, which are rate-limiting enzymes in the auxin biosynthetic pathway. Previous studies showed that YUC8 overexpression (YUC8 OE), as well as ectopic expression [...] Read more.
Auxin plays an essential role in regulating Arabidopsis growth and development. YUCCA (YUC) family genes encode flavin monooxygenases, which are rate-limiting enzymes in the auxin biosynthetic pathway. Previous studies showed that YUC8 overexpression (YUC8 OE), as well as ectopic expression of YUC8 driven by GL2 (GLABRA 2) and TT12 (TRANSPARENT TESTA 12) promoters, which are specifically expressed in the epidermis and inner seed integument, respectively, produced larger seeds compared to the Col. However, the impact of these transgenic lines on the vegetative growth of Arabidopsis remains unclear. Here, we show that the GL2pro:YUC8-GFP and TT12pro:YUC8-GFP transgenic plants produce a moderate excessive auxin accumulation phenotype compared to the YUC8 OE. These two transgenic lines produced smaller rosette and leaf, higher plant height, fewer branches, and longer siliques. These data will provide a basis for the study of the relationship between the ectopic expression of auxin synthesis genes and crop yield. Full article
Show Figures

Figure 1

Review
Environmental Regulation of Weed Seed Dormancy and Germination
Seeds 2023, 2(3), 259-277; https://doi.org/10.3390/seeds2030020 - 30 Jun 2023
Viewed by 478
Abstract
Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced [...] Read more.
Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced dormancy), in which dormancy develops in seeds through some experience after release from the parent plant. Mechanisms of seed dormancy are categorized as embryo dormancy and coat-imposed dormancy. In embryo dormancy, the control of dormancy resides within the embryo itself, and in coat-imposed dormancy, it is maintained by the structures enclosing the embryo. Many factors can influence seed dormancy during development and after dispersal; they can be abiotic, biotic, or a combination of both. Most weeds deposit a large number of seeds in the seed bank, which can be one of two types—transient or persistent. In the transient type, all viable seeds in the soil germinate or die within one year, and there is no carry-over until a new crop is deposited. In the persistent type, at least some seeds survive in the soil for more than one year and there is always some carry-over until a new crop is deposited. Some dormant seeds require after-ripening—changes in dry seeds that cause or improve germination. Nondormant, viable seeds can germinate if they encounter appropriate conditions. In the face of climate change, including global warming, some weeds produce a large proportion of nondormant seeds, which germinate shortly after dispersal, and a smaller, more transient seed bank. Further studies are required to explore this phenomenon. Full article
Show Figures

Figure 1

Review
Molecular Mechanisms in Understanding Anoxia Tolerance in Rice Seeds under Submergence and Their Implication in Rice Biotechnology
Seeds 2023, 2(3), 246-258; https://doi.org/10.3390/seeds2030019 - 21 Jun 2023
Viewed by 490
Abstract
Submergence in rice fields creating inundation stress and realizing anoxia or hypoxia is a problem in agriculture. Seeds under this oxygen deficit are faced with fermentative respiration, where the end product would be poisoning the tissue viability. This is more aggravated in direct [...] Read more.
Submergence in rice fields creating inundation stress and realizing anoxia or hypoxia is a problem in agriculture. Seeds under this oxygen deficit are faced with fermentative respiration, where the end product would be poisoning the tissue viability. This is more aggravated in direct seeded rice cultivation with the accumulation of lactate as a poison. This review is concerned with the basic insights into anoxia tolerance in seeds and possible strategies to reduce anoxic shock through the modification of metabolism preceded by gene expression. The major concern of anoxic germination is starch metabolism and downstream physiological realization to facilitate escape or quiescence strategy, overcoming submergence stress. The coleoptiles facing hypoxic stress mated with transcripts for oxidative traits, energy metabolism, and proteins for membrane peroxidation in support of energy metabolism are the most important. Hypoxic genes are recovered from traditional indica and japonica land races of rice, and show changes in glycolytic flux and sugar sensing. Anoxic germination and seedling vigor are based on a combinational regulation of oxidative stress and fermentative catabolism. De novo antioxidant and antioxidative enzyme production can support improved seed germination in this condition. Pre-harvest spouting with seed-coat-induced dormancy, hormonal ratios, and hydrolyses would be of concern. Therefore, comprehensive analysis aimed to understand rice seed priming for better gas exchange, diffusion, temperature sensitivity, ion uptake, redox balance, and others. Still, in-depth insights are being awaited for better understanding the physiological and molecular basis using a multi-omics approach for better seed priming to overcome the anoxic/hypoxic revelation mostly acquainted with submergence stress. Full article
Show Figures

Figure 1

Article
Stimulating Role of Calcium and Cyclic GMP in Mediating the Effect of Magnetopriming for Alleviation of Salt Stress in Soybean Seedlings
Seeds 2023, 2(2), 232-245; https://doi.org/10.3390/seeds2020018 - 16 May 2023
Viewed by 565
Abstract
This current study examined the role of calcium (Ca) and Cyclic GMP (cGMP) in mitigating the adverse effect of salt stress through magnetopriming of soybean cultivar JS-335 seeds with a static magnetic field (SMF, 200 mT for 1 h). The salt stress (50 [...] Read more.
This current study examined the role of calcium (Ca) and Cyclic GMP (cGMP) in mitigating the adverse effect of salt stress through magnetopriming of soybean cultivar JS-335 seeds with a static magnetic field (SMF, 200 mT for 1 h). The salt stress (50 mMNaCl) extensively reduced the early seedling growth (64%), vigour Index-I (71%), vigour Index-II (39%), total amylase (59%), protease (63%), and nitrate reductase (NR, 19%) activities in un-primed soybean seedlings. However, magnetopriming and Ca treatment enhanced all of these measured parameters along with remarkable increase in reactive oxygen species (ROS) and nitric oxide (NO) content. The exogenous application of Ca2+, cGMP and ROS regulators such as nifedipine (Ca2+ channel blocker), EGTA, ethylene glycol-β-amino ethyl ether tetra acetic acid (Ca2+chelators), genistein (cGMP blocker), and dimethyl thiourea (DMTU, H2O2 inhibitor) negatively affects the SMF-induced seedling length, seedling vigour, ROS, NO, and enzyme activities such as protease, total amylase, and NR in soybean seedlings. Results presented by using specific various biochemical inhibitors of Ca, cGMP, or ROS signalling in vivo indicated that Ca and cGMP are also involved with ROS and NO in the signal transduction of magnetic field enthused soybean seed germination and seedling growth under salt stress. Full article
(This article belongs to the Special Issue Seed Priming Approaches That Achieve Environmental Stress Tolerance)
Show Figures

Figure 1

Article
Characterizing the Change of Annual Cone Production in Longleaf Pine Forests
Seeds 2023, 2(2), 220-231; https://doi.org/10.3390/seeds2020017 - 24 Apr 2023
Viewed by 742
Abstract
Sporadic cone (or seed) production challenges longleaf pine forest restoration. Characterizing annual cone production change from long-term monitored data provides functional information on the foundational species of this imperiled ecosystem. In this study, permutation entropy (PE) and phase change were used to analyze [...] Read more.
Sporadic cone (or seed) production challenges longleaf pine forest restoration. Characterizing annual cone production change from long-term monitored data provides functional information on the foundational species of this imperiled ecosystem. In this study, permutation entropy (PE) and phase change were used to analyze longleaf pine annual cone production based on cone counts from four sites (Escambia Experimental Forest, Blackwater River State Forest, The Jones Center at Ichauway, and Sandhills State Forest). PE is an analytical tool to measure the complexity of a dynamic system while phase change characterizes the stage of self-organization. Results indicate that PE at each site was close to 1.0 (largely random changes in annual cone production) and generally increased with time. The positive association between the permutation entropy of cone production and average air temperature at different times was significant at two sites (Blackwater River State Forest and The Jones Center at Ichauway). The frequency distribution of phases (e.g., Poor (P), Fair (F), Good (G), Bumper (B)) in cone production followed negative power laws. Phase P could transition to any stage, but more than 50% remained in P across sites. For phase G, it would revert to P more than 50% of the time. Phase B would shift to P, except at Sandhills State Forest. The average lasting time of phase P was approximately 3.7 years. The overall relationship between the interval time of phase B and cone production was not statistically significant. Similarly, the overall relationship between cone production in phase B and the phase change times between consecutive B phases was not statistically significant. These results provide information on the ecological complexity of cone (or seed) production. Our methods can be helpful for estimating the occurrence of bumper cone (or seed) production, the lasting period between phase changes, and providing a tool for predicting natural regeneration potential over time for longleaf pine and other tree species (e.g., masting species). Full article
Show Figures

Figure 1

Article
Physiological Potential of Seeds of Handroanthus spongiosus (Rizzini) S. Grose (Bignoniaceae) Determined by the Tetrazolium Test
Seeds 2023, 2(2), 208-219; https://doi.org/10.3390/seeds2020016 - 20 Apr 2023
Viewed by 640
Abstract
Tetrazolium test (TZT) can quickly evaluate in detail the viability and vigor of seeds. This study aimed to determine the optimal conditions for conducting the TZT on seeds of Handroanthus spongiosus. For this purpose, seeds from three lots were pre-soaked in water [...] Read more.
Tetrazolium test (TZT) can quickly evaluate in detail the viability and vigor of seeds. This study aimed to determine the optimal conditions for conducting the TZT on seeds of Handroanthus spongiosus. For this purpose, seeds from three lots were pre-soaked in water for 16 h, followed by extraction of the tegument and immersion in tetrazolium salt solutions at different concentrations (0.01–0.1%), for increasing periods (1–4 h) and at 30 °C in the dark. The experimental design was completely randomized with a 4 × 4 factorial scheme with 25 seeds per repetition. We applied generalized linear models and the Tukey test for pairwise comparisons of the means at 5% probability. The viability/vigor results were compared with data obtained from the germination test at 25 °C using a subsample of seeds from the same lots. The time (1 h to 4 h) of immersion of the seeds in tetrazolium salt solutions did not cause a clear coloration difference. The seeds subjected to all treatment concentrations for 3 h presented average viability greater than 60%, with no difference in germination percentage. The TZT at 0.01% tetrazolium salt solution for 3 h was most efficient in assessing the viability of the Handroanthus spongiosus seeds. Full article
Show Figures

Figure 1

Article
Assessment of Storage Potential of Onion Varieties Using Variables Extracted from a Mathematical Model 4-Parameter Hill Function (4-PHF)
Seeds 2023, 2(2), 195-207; https://doi.org/10.3390/seeds2020015 - 19 Apr 2023
Viewed by 507
Abstract
Onion seeds are prone to rapid germination and viability losses under unfavourable storage conditions. The final germination percentage is considered the most important parameter for determining the performance of seed lots after storage, although other quantitative traits, such as the time and speed [...] Read more.
Onion seeds are prone to rapid germination and viability losses under unfavourable storage conditions. The final germination percentage is considered the most important parameter for determining the performance of seed lots after storage, although other quantitative traits, such as the time and speed of germination, help in more realistic predictions of seed germination. A study was conducted on seventeen seed lots of onion seeds to delineate the most comprehensive parameter indicating seed performance after storage using the four-parameter Hill function (4-PHF) mathematical model. Seeds of seventeen onion cultivars were subjected to accelerated ageing at 42 °C and 100% RH for 48, 96 and 144 h, followed by seed germination evaluation. The germination performance was evaluated by 4-PHF based on time-related parameters, such as the time to maximum germination rate (TMGR), time to 50% germination (T50), and uniformity (U), along with the germination percentage (a), shape and steepness of the Four-Parameter Hill Function (FPHF) curve (b), which were important determinants of the area under curve (AUC), and RoG (rate of germination) curves. Among the parameters, the AUC was found to provide the most comprehensive evaluation of the storage performance of the onion varieties and was decisive in the classification of the varieties as ‘good’ or ‘poor’ storers. A positive correlation between seed vigour index-I (SVI-I) and the AUC reiterated the suitability of using 4-PHF parameters for the assessment of the storage potential of onion varieties. Full article
Show Figures

Figure 1

Article
Gemellar Competition as a Key Component in Seed–Seedling Transition of Handroanthus chrysotrichus (Mart. ex A. DC.) Mattos (Bignoniaceae)
Seeds 2023, 2(2), 177-194; https://doi.org/10.3390/seeds2020014 - 13 Apr 2023
Viewed by 754
Abstract
The occurrence of more than one embryo per seed (polyembryony) is common among angiosperms; however, there are gaps in the knowledge of its effects on the early stages of plant development. In this context, we study the effects of polyembryony and intraspecific variability [...] Read more.
The occurrence of more than one embryo per seed (polyembryony) is common among angiosperms; however, there are gaps in the knowledge of its effects on the early stages of plant development. In this context, we study the effects of polyembryony and intraspecific variability in gemellar competition during the seed–seedling transition in Neotropical Handroanthus chrysotricus (Bignoniaceae). We used seeds from five cultivated trees in an urban environment inserted in a biodiversity hotspot (Cerrado). Embryo mass, seed germination, seedling emergence and seedling morphometry were evaluated. We did not find intraspecific variability in seed germination, seedling emergence or the mean number of embryos and seedlings per seed. On the other hand, intraspecific variability was observed during the transition from embryo to seedling. When only one seedling emerged from a seed, the seed–seedling transition was more asynchronous than when more seedlings emerged from one seed (with higher uncertainty and a longer time to emergence of the last seedling). The mass of embryos and seedlings decreased with the increase in the number of embryos in a seed, reinforcing the occurrence of gemellar competition. However, the total mass of embryos per seed was similar. The increase in seedlings per seed also decreased the morphometric measurements of each one. A positive morphometric aspect of the emergence of two seedlings per seed was that they had the highest total seedling mass, evidencing the positive Allee effect. Polyembryony had both positive and negative effects on seed germination and seedling morphology in the species, which helps to understand how this phenomenon acts on seed biology and plant establishment. Full article
Show Figures

Figure 1

Article
Comparative Effect of Varieties and Types of Containers on Seed Germination and Seedling Growth of Geranium (Palergonium graveolens)
Seeds 2023, 2(1), 165-176; https://doi.org/10.3390/seeds2010013 - 09 Mar 2023
Viewed by 949
Abstract
Geranium (Pelargonium graveolens L’Hér.) is an important commercial horticultural plant extensively used in outdoor landscaping. Seed emergence has always remained a problem in geranium due to its hard seed nature. Hence its germination and other emergence-related attributes need to be adequately tested. [...] Read more.
Geranium (Pelargonium graveolens L’Hér.) is an important commercial horticultural plant extensively used in outdoor landscaping. Seed emergence has always remained a problem in geranium due to its hard seed nature. Hence its germination and other emergence-related attributes need to be adequately tested. The purpose of this study was to evaluate the germination and seedling growth of geraniums under different types of containers. In this regard, the seeds of two varieties of geranium viz. Large FID mixed and Star mixed were planted in different types of containers. The containers included black trays plastic pots, plastic bags, and nonwoven fabric bags. The seed emergence and other germination related parameters were significantly affected by the different types of containers. However, varieties exhibited similar responses for most germination and growth characteristics. Data were collected for seed germination, mean germination time, germination index and seedling vigor index. The type of containers showed a significant impact on seedling growth and development. The taller plants with more leaves and maximum biomass production were recorded from seeds sown in nonwoven fabric type bags. The results pertaining to varieties demonstrated that Star mixed showed better emergence and vigorous seedlings in comparison with large FID mixed. The taller seedlings with maximum leaves and shoot biomass were also recorded from Star mixed grown in nonwoven fabric type bags. Based on the results, it is concluded that germanium may be raised in nonwoven fabric bags for better seed emergence and seedling growth and development. Full article
Article
Photothermal Quotient Describes the Combined Effects of Heat and Shade Stresses on Canola Seed Productivity
Seeds 2023, 2(1), 149-164; https://doi.org/10.3390/seeds2010012 - 08 Mar 2023
Cited by 1 | Viewed by 984
Abstract
There is evidence of the negative effects on canola seed yield caused by shading (SH) and high temperature stress (HT) separately, but the combined effect of both stresses has not been studied. This work aimed to (i) evaluate the effects of SH and [...] Read more.
There is evidence of the negative effects on canola seed yield caused by shading (SH) and high temperature stress (HT) separately, but the combined effect of both stresses has not been studied. This work aimed to (i) evaluate the effects of SH and HT stresses, alone and combined, on floral development, seed yield and quality, (ii) quantify the resulting effect (additive, synergistic, antagonistic) of combined stresses, and (iii) examine the utility of the photothermal quotient (PTQ, solar radiation/temperature ratio) to predict seed yield in stressed canola crops. Two field experiments were performed in Buenos Aires (Argentina) applying HT daytime temperature stress (25–30 °C from 1000 to 1500 h), SH (−80% irradiance), and SH + HT combined stresses, with C unstressed (20 °C and 100% irradiance) crops. Long and short duration SH and HT strongly affected floral development (fewer flowers and pods, with smaller ovules) and seed yield (reduction from −40 to −90% respect to C). Combined SH + HT exhibited detrimental synergistic effects on seed yield and oil concentration for long duration stresses, whereas antagonistic effects were mainly observed for short stresses. We conclude that the PTQ (cumulative from 100 to 500 °Cd after flowering) summarizes adequately the detrimental effects of combined post-flowering abiotic stresses on canola seed productivity. Full article
Show Figures

Figure 1

Communication
Dormancy Breaking of Teramnus labialis (L.f.) Spreng Seeds Is Affected by the Extent of Liquid Nitrogen Exposure
Seeds 2023, 2(1), 138-148; https://doi.org/10.3390/seeds2010011 - 01 Mar 2023
Viewed by 1032
Abstract
Teramnus labialis (L.f.) Spreng shows dormancy as a result of impermeability of the seed coat, which requires scarification treatment before sowing. Liquid nitrogen (LN) as a scarifying treatment has recently been used on this species, with excellent results. However, moisture content and immersion [...] Read more.
Teramnus labialis (L.f.) Spreng shows dormancy as a result of impermeability of the seed coat, which requires scarification treatment before sowing. Liquid nitrogen (LN) as a scarifying treatment has recently been used on this species, with excellent results. However, moisture content and immersion time on LN are factors that may affect seed germination and dormancy break. This report studies (i) the effects of dehydration on T. labialis seed viability and germination and (ii) the appropriate moisture content and extent of LN to make this scarification an effective treatment. Moisture contents of 4%, 6%, 8%, and 10% fresh weight basis (FWB) and extension to LN for 15, 30, 45, and 60 min were performed. Seed viability did not change after seed dehydration up to a moisture content of 4% FWB, whereas the percentage of germination decreased as a result of increasing the percentage of hard seeds. The seed moisture content did not affect germination after immersion in LN, but at least 30 min of exposure was required for dormancy break. The mean germination time, germination index, and time to 50% germination improved with the increasing germination from 33% to 91% and a greater duration of immersion in LN. The dormancy of T. labialis seeds with a moisture content between 4% and 10% FWB was only broken when exposed to LN for 30 to 60 min. Full article
Show Figures

Figure 1

Back to TopTop