Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Journal = Biomechanics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
The Development of a Standardized Protocol for Quantifying Equestrian Eventing Cross-Country Ground
Biomechanics 2023, 3(3), 343-361; https://doi.org/10.3390/biomechanics3030029 - 07 Aug 2023
Viewed by 219
Abstract
The ground has long been cited as a key contributing factor for injury risk in the cross-country phase of eventing. The current study aimed to develop a practically useful standardized protocol for measuring eventing cross country ground. Data collection was split into three [...] Read more.
The ground has long been cited as a key contributing factor for injury risk in the cross-country phase of eventing. The current study aimed to develop a practically useful standardized protocol for measuring eventing cross country ground. Data collection was split into three phases: Phase 1 (Validation), Phase 2 (Expansion of data set), and Phase 3 (Threshold establishment). During Phase 1, data from nine event courses were collected using an Orono Biomechanical Surface Tester (OBST), Vienna Surface Tester (VST), Lang Penetrometer, Going Stick, and moisture meter. Using linear regression, 80% of the variability in cushioning measured with the OBST was predicted from moisture and VST measurements (p < 0.001). In Phase 2, objective data from 81 event courses and subjective assessments from 180 event riders were collected. In Phase 3, k-means cluster analysis was used to classify the courses into ten clusters based on average course measurements of moisture, cushioning, firmness, stiffness, depth, and coefficient of restitution. Based on cluster membership, course average subjective data (16 courses) were compared using a General Linear Model. Significant differences (p < 0.05) in subjective impact firmness (p = 0.038) and subjective cushioning (p = 0.010) were found between clusters. These data and cluster thresholds provide an event course baseline for future comparisons. Full article
(This article belongs to the Special Issue Advances in Sensing-Based Animal Biomechanics)
Show Figures

Figure 1

Review
Stem Cell Scaffolds for the Treatment of Spinal Cord Injury—A Review
Biomechanics 2023, 3(3), 322-342; https://doi.org/10.3390/biomechanics3030028 - 01 Aug 2023
Viewed by 330
Abstract
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim [...] Read more.
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim to improve and enhance neurologic functionality. The ability for neural stem cells (NSCs) to differentiate into diverse neural and glial cell precursors has stimulated the investigation of stem cell scaffolds as potential therapeutics for SCI. Various scaffolding modalities including composite materials, natural polymers, synthetic polymers, and hydrogels have been explored. However, most trials remain largely in the preclinical stage, emphasizing the need to further develop and refine these treatment strategies before clinical implementation. In this review, we delve into the physiological processes that underpin NSC differentiation, including substrates and signaling pathways required for axonal regrowth post-injury, and provide an overview of current and emerging stem cell scaffolding platforms for SCI. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

Article
Fatigue Effects on Peak Plantar Pressure and Bilateral Symmetry during Gait at Various Speeds
Biomechanics 2023, 3(3), 310-321; https://doi.org/10.3390/biomechanics3030027 - 23 Jul 2023
Viewed by 290
Abstract
Fatigue-related changes in gait biomechanics, specifically plantar pressures, are well documented in the general population. However, research is generally confined to unilateral measures across a limited range of speeds, while changes in more well-trained populations remain largely unknown. Therefore, we sought to assess [...] Read more.
Fatigue-related changes in gait biomechanics, specifically plantar pressures, are well documented in the general population. However, research is generally confined to unilateral measures across a limited range of speeds, while changes in more well-trained populations remain largely unknown. Therefore, we sought to assess the impact of fatigue on bilateral peak plantar pressure (PP) and plantar pressure symmetry angle (SA) in well-trained runners across a range of speeds. Data from 16 (females, n = 9) well-trained runners were collected using in-sole pressure sensors pre- and post-fatigue at the following speeds: walking (1.3 m/s), jogging (2.7 m/s), running (3.3 m/s), and sprinting (4.5 m/s). Pre-fatigue PP significantly increased from walking to jogging (p < 0.001) and from jogging to running (p < 0.005) with no difference between running and sprinting (p > 0.05). Post-fatigue PP for walking was less than jogging (p < 0.002), running (p < 0.001), and sprinting (p < 0.001), with no other significant differences (p > 0.05). Post-fatigue PP was significantly greater when compared to pre-fatigue PP at all speeds (p < 0.001 for all). Though SA was not significantly different pre- to post-fatigue across speeds (p’s > 0.05) at the cohort level, noteworthy changes were observed at the individual level. Overall, fatigue effects are present at all running speeds but isolating these effects to a single side (left or right) may be inadequate. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

Article
Horizontal Deceleration Performance in Professional Female Handball Players
Biomechanics 2023, 3(3), 299-309; https://doi.org/10.3390/biomechanics3030026 - 19 Jul 2023
Viewed by 404
Abstract
Given the multidirectional nature of the sport, handball athletes must frequently perform high-intensity decelerations to avoid defenders, generate space, or perform directional changes. The aim of the present study was twofold: (i) to investigate different kinematic measures of horizontal deceleration performance by comparing [...] Read more.
Given the multidirectional nature of the sport, handball athletes must frequently perform high-intensity decelerations to avoid defenders, generate space, or perform directional changes. The aim of the present study was twofold: (i) to investigate different kinematic measures of horizontal deceleration performance by comparing the acceleration-deceleration assessment (ADA) with the 5-0-5 test and (ii) to investigate relationships between force-time characteristics derived from the countermovement vertical jump (CVJ) and measures of horizontal deceleration performance. Eleven female handball players competing in the first-tier professional league in Europe performed three CVJs while standing on a uni-axial force plate system sampling at 1000 Hz, followed by two ADAs (i.e., maximal-effort acceleration over a 10 m distance, followed by rapid deceleration) and 5-0-5 test trials. Tripod-mounted radar sampling at 47 Hz, placed 5 m behind the start line, was used to record horizontal velocity data. Each test was separated by a 5–7 min rest interval to minimize the influence of fatigue. No statistically significant differences were found in horizontal deceleration performance parameters between ADA and the 5-0-5 test. However, athletes with a higher CVJ height and reactive strength index-modified showed better performance in terms of horizontal deceleration measures such as maximal approach velocity and average and maximal deceleration. Overall, these results may be of interest to practitioners working with multidirectional sport athletes such as handball players as they provide critical insight for the selection of assessments and training strategies targeted toward optimizing on-court athlete performance. Full article
(This article belongs to the Special Issue Locomotion Biomechanics and Motor Control)
Show Figures

Figure 1

Article
The Relationship between Bodyweight, Maximum and Relative Strength, and Power Variables during Flywheel Inertial Training
Biomechanics 2023, 3(3), 291-298; https://doi.org/10.3390/biomechanics3030025 - 17 Jul 2023
Viewed by 283
Abstract
The main aim of this study was to examine the relationship between body weight, absolute and relative strength and power variables in a flywheel Romanian deadlift. A secondary aim was to assess the inter-day reliability of a novel power assessment protocol previously used [...] Read more.
The main aim of this study was to examine the relationship between body weight, absolute and relative strength and power variables in a flywheel Romanian deadlift. A secondary aim was to assess the inter-day reliability of a novel power assessment protocol previously used to determine the inertial load that produced the maximum power output in Flywheel Inertia Training. Ten physically active males took part in this study. Participants had some experience with flywheel devices, but all had a minimum of 24 months of traditional resistance training experience. The first testing session consisted of three sets of 10 repetitions with a different inertial load for each set (0.050, 0.075, and 1.00 kg·m2). Each set’s first and second repetitions were used to build momentum and were excluded from data analysis. The order of inertial load used in each trial was standardized for all participants: first, 0.050 kg·m2, second, 0.075 kg·m2, and last, 0.100 kg·m2. The secondary testing session followed the same procedure as the first. No statistically significant (p < 0.05) effect was found between any of the variables in the correlation analysis. There were large positive correlations between the 1 repetition max flywheel Romanian deadlift and peak concentric power, relative strength, and peak concentric and eccentric peak powers. Both body weight and relative strength showed moderate negative correlations with % eccentric overload, whereas moderate positive correlations were observed between 1RM and peak eccentric power. Both concentric power and eccentric power showed excellent reliability, while the reliability for % eccentric overload ranged from poor to excellent depending on the inertial load. In conclusion, this study shows that a protocol to assess the maximum power output has excellent reliability for both ECC and CON power and may be used in future flywheel training. The results also showed that body weight, maximum strength, and relative strength were not largely related to power variables. An individualized approach to flywheel training is required. Full article
(This article belongs to the Special Issue Locomotion Biomechanics and Motor Control)
Show Figures

Figure 1

Article
An Automated Approach to Instrumenting the Up-on-the-Toes Test(s)
Biomechanics 2023, 3(3), 278-290; https://doi.org/10.3390/biomechanics3030024 - 26 Jun 2023
Viewed by 534
Abstract
Normal ankle function provides a key contribution to everyday activities, particularly step/stair ascent and descent, where many falls occur. The rising to up-on-the-toes (UTT) 30 second test (UTT-30) is used in the clinical assessment of ankle muscle strength/function and endurance and is typically [...] Read more.
Normal ankle function provides a key contribution to everyday activities, particularly step/stair ascent and descent, where many falls occur. The rising to up-on-the-toes (UTT) 30 second test (UTT-30) is used in the clinical assessment of ankle muscle strength/function and endurance and is typically assessed by an observer counting the UTT movement completed. The aims of this study are: (i) to determine whether inertial measurement units (IMUs) provide valid assessment of the UTT-30 by comparing IMU-derived metrics with those from a force-platform (FP), and (ii) to describe how IMUs can be used to provide valid assessment of the movement dynamics/stability when performing a single UTT movement that is held for 5 s (UTT-stand). Twenty adults (26.2 ± 7.7 years) performed a UTT-30 and a UTT-stand on a force-platform with IMUs attached to each foot and the lumbar spine. We evaluate the agreement/association between IMU measures and measures determined from the FP. For UTT-30, IMU analysis of peaks in plantarflexion velocity and in FP’s centre of pressure (CoP) velocity was used to identify each repeated UTT movement and provided an objective means to discount any UTT movements that were not completed ‘fully’. UTT movements that were deemed to have not been completed ‘fully’ were those that yielded peak plantarflexion and CoP velocity values during the period of rising to up-on-the-toes that were below 1 SD of each participant’s mean peak rising velocity across their repeated UTT. The number of UTT movements detected by the IMU approach (23.5) agreed with the number determined by the FP (23.6), and each approach determined the same number of ‘fully’ completed movements (IMU, 19.9; FP, 19.7). For UTT-stand, IMU-derived movement dynamics/postural stability were moderately-to-strongly correlated with measures derived from the FP. Our findings highlight that the use of IMUs can provide valid assessment of UTT test(s). Full article
(This article belongs to the Special Issue Inertial Sensor Assessment of Human Movement)
Show Figures

Figure 1

Communication
Optimum Handle Location for the Hand-Assisted Sit-to-Stand Transition: A Tool
Biomechanics 2023, 3(2), 267-277; https://doi.org/10.3390/biomechanics3020023 - 14 Jun 2023
Viewed by 438
Abstract
Background: The aging process contributes to the decline in physical capacity that leads to loss of independence in performing life activities. Immobility and instability are the most significant predictors and indicators of physical disability and dependence. As a result, a variety of assistive [...] Read more.
Background: The aging process contributes to the decline in physical capacity that leads to loss of independence in performing life activities. Immobility and instability are the most significant predictors and indicators of physical disability and dependence. As a result, a variety of assistive devices exist to address immobility and instability in older adults, including walkers, canes, crutches, wheelchairs and handrails. Sit-to-stand (STS) transitions are the most common transitions in daily mobility activities. The ability to perform STS transitions successfully is therefore one of the most important activities to focus attention on. As a result of physical deterioration, older adults will sooner or later be faced with their physical limitations, and in particular, will not be able to provide enough torque at critical body joints to make the STS transition. Aim: This paper suggests employing two-arm assistance using two handles located symmetrically in the body’s sagittal plane. During the aging process, people are faced with varying levels of muscle deterioration and body constraints and consequently require different levels of assistance to complete the transition successfully. This paper aims to develop a tool to find the optimum handle location for people based on their body constraints to reduce knee torque (identified as the critical joint in the STS transition). These findings are also used to measure the effects of assistive device handle position on the biomechanics of the two-arm assisted STS transition. Methods: For this purpose, a theoretical tool was developed by integrating human body kinetics with a multi-objective genetic algorithm to find the optimum hand force required at the seat-off point for a set of potential handle locations. The tool was set to achieve the minimum knee torque within the defined body constraints and assumptions. In line with the physics of the STS transition, the “seat-off point”, when subjects lose their seat support, was chosen as the most challenging point of the task. This was coupled with the “nose over toes” posture recommended to older adults by occupational therapists. Results and Discussion: The schematic of the developed tool shows that the best handle locations requiring the minimum torques at the body joints are positioned in handle zone 2, where the handles are placed vertically above the knee and below the hip joints and horizontally located ahead of the hip and behind the knee joints. Within this handle zone, both components of the hand forces (vertical downward and horizontal backward) provide assisting torque to all the body joints and consequently reduce the torques required at body joints. Full article
(This article belongs to the Topic Human Movement Analysis)
Show Figures

Figure 1

Article
A Biomechanical Comparison between Squatbar® and Olympic Barbell
Biomechanics 2023, 3(2), 258-266; https://doi.org/10.3390/biomechanics3020022 - 06 Jun 2023
Viewed by 790
Abstract
When performing the traditional barbell back squat, athletes may experience discomfort in the shoulders or be limited by shoulder mobility. The Squatbar® is a barbell designed to be ergonomic to the shoulders but has never, in the scientific literature, been compared to [...] Read more.
When performing the traditional barbell back squat, athletes may experience discomfort in the shoulders or be limited by shoulder mobility. The Squatbar® is a barbell designed to be ergonomic to the shoulders but has never, in the scientific literature, been compared to the traditional Olympic barbell. Thus, the current study investigated kinematics, kinetics, and myoelectric activity (EMG) between the Squatbar® barbell and the Olympic barbell when performing a one-repetition maximum (1-RM) back squat. Twelve strength-trained men (body mass: 83.5 ± 7.8 kg, age: 27.3 ± 3.8 years, height: 180.3 ± 6.7 cm) performed a 1-RM squat with both the Olympic and Squatbar® barbells. The paired samples t-test revealed significantly more weight was lifted with the Olympic barbell compared to the Squatbar® barbell (148 ± 21 kg vs. 144.5 ± 20 kg) and was accompanied by greater shoulder external rotation (74 ± 7.5° vs. 59.6 ± 9.2°). No differences in joint kinematics of the lower limbs, kinetics, or EMG were observed between the two barbells. The results of the current study indicate the Squatbar® to be a suitable substitution for the Olympic barbell for athletes with reduced shoulder mobility when performing the squat. It was concluded that the Squatbar® induces similar kinetics, kinematics, and EMG when compared to the Olympic barbell, except for reducing external rotation of the shoulder. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

Case Report
Effects of Game-Specific Demands on Accelerations during Change of Direction Movements: Analysis of Youth Female Soccer
Biomechanics 2023, 3(2), 250-257; https://doi.org/10.3390/biomechanics3020021 - 29 May 2023
Viewed by 654
Abstract
The aim of this study was to assess center of mass (COM) acceleration and movement during change of direction (COD) maneuvers during a competitive soccer game to elucidate situation-specific demands of COD performance. This information can assist in developing soccer-specific tests and training [...] Read more.
The aim of this study was to assess center of mass (COM) acceleration and movement during change of direction (COD) maneuvers during a competitive soccer game to elucidate situation-specific demands of COD performance. This information can assist in developing soccer-specific tests and training methods. Fifteen elite-level female youth soccer players were tracked for one game with inertial measurement units (IMU) attached to the lower back. COD movements in combination with situational patterns were identified using high-speed video. LASSO regression was used to identify the most important predictors associated with higher vertical peak accelerations (PAv) of the COM during COD movements. COD angle, running speed, contact, and challenge from the opposition were identified as important features related to higher PAv. This study adds to the literature on the demands of COD performance in soccer match-play. The unique approach with game-specific situational data from female youth players provides increased insight into the game-demands of COD and agility performance. PAv in games was higher with larger COD angles, increased running speed, or with contact when the player was challenged by the opposition. A larger study including more games is warranted to increase confidence in using these variables as a basis for training or testing agility. Full article
(This article belongs to the Topic Human Movement Analysis)
Show Figures

Figure 1

Article
A Novel Method to Assist Clinical Management of Mild Traumatic Brain Injury by Classifying Patient Subgroups Using Wearable Sensors and Exertion Testing: A Pilot Study
Biomechanics 2023, 3(2), 231-249; https://doi.org/10.3390/biomechanics3020020 - 26 May 2023
Viewed by 707
Abstract
Although injury mechanisms of mild traumatic brain injury (mTBI) may be similar across patients, it is becoming increasingly clear that patients cannot be treated as one homogenous group. Several predominant symptom clusters (PSC) have been identified, each requiring specific and individualised treatment plans. [...] Read more.
Although injury mechanisms of mild traumatic brain injury (mTBI) may be similar across patients, it is becoming increasingly clear that patients cannot be treated as one homogenous group. Several predominant symptom clusters (PSC) have been identified, each requiring specific and individualised treatment plans. However, objective methods to support these clinical decisions are lacking. This pilot study explored whether wearable sensor data collected during the Buffalo Concussion Treadmill Test (BCTT) combined with a deep learning approach could accurately classify mTBI patients with physiological PSC versus vestibulo-ocular PSC. A cross-sectional design evaluated a convolutional neural network model trained with electrocardiography (ECG) and accelerometry data. With a leave-one-out approach, this model classified 11 of 12 (92%) patients with physiological PSC and 3 of 5 (60%) patients with vestibulo-ocular PSC. The same classification accuracy was observed in a model only using accelerometry data. Our pilot results suggest that adding wearable sensors during clinical tests like the BCTT, combined with deep learning models, may have the utility to assist management decisions for mTBI patients in the future. We reiterate that more validation is needed to replicate the current results. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

Article
Split-Belt Treadmill Training Improves Mechanical Energetics and Metabolic Cost in Women with Unilateral Hip Osteoarthritis: A Proof-of-Concept Study
Biomechanics 2023, 3(2), 220-230; https://doi.org/10.3390/biomechanics3020019 - 20 May 2023
Viewed by 954
Abstract
We have shown that step length asymmetry seen in hip osteoarthritis (OA) is associated with poorer mechanical energy exchange and higher metabolic cost. Thus, we conducted this proof-of-concept study to investigate whether modifying step length through split-belt treadmill training can improve walking energetics. [...] Read more.
We have shown that step length asymmetry seen in hip osteoarthritis (OA) is associated with poorer mechanical energy exchange and higher metabolic cost. Thus, we conducted this proof-of-concept study to investigate whether modifying step length through split-belt treadmill training can improve walking energetics. We conducted split-belt treadmill training in four periods with simultaneous motion and metabolic analyses in 10 women with unilateral hip OA. Using repeated measures ANOVA, we evaluated changes across each period, in step length asymmetry, mechanical energy exchange, and O2 rate. We also examined changes in hip range of motion and peak plantarflexor moment. We used Spearman correlations (rho) to assess the strength of associations between variables at baseline and after adaptation. We found that step length asymmetry and O2 rate decreased (p = 0.007, p < 0.001) and mechanical energy exchange increased (p < 0.001). Reduced step length asymmetry was associated with reduced O2 rate (rho = 0.732, p = 0.016). Hip range of motion increased (p < 0.001) and was associated with decreased step length asymmetry (rho = 0.818, p = 0.004), indicating a potential mechanism. These findings suggest that reducing step length asymmetry by split-belt treadmill training could improve walking energetics in hip OA people. Full article
Show Figures

Figure 1

Article
Reliability of a Pendulum Apparatus for the Execution of Plyometric Rebound Exercises and the Comparison of Their Biomechanical Parameters with Load-Matching Vertical Drop Jumps
Biomechanics 2023, 3(2), 204-219; https://doi.org/10.3390/biomechanics3020018 - 22 Apr 2023
Viewed by 806
Abstract
The inability to control the body center of mass (BCM) initial conditions, when executing plyometric exercises, comprises a restrictive factor to accurately compare jumps executed vertically and horizontally. The purpose of the study was to present a methodological approach for the examination of [...] Read more.
The inability to control the body center of mass (BCM) initial conditions, when executing plyometric exercises, comprises a restrictive factor to accurately compare jumps executed vertically and horizontally. The purpose of the study was to present a methodological approach for the examination of BCM initial conditions during vertical drop jumps (VDJ) and plyometric rebound jumps performed with a pendulum swing (HPRJ). A system consisting of two force plates was used for the evaluation of VDJ. A bifilar pendulum, equipped with a goniometer and accelerometer, was constructed for the evaluation of the HPRJ. Kinematic parameters from both jump modalities were obtained by means of videography (100 Hz). Thirty-eight physically active young males executed VDJ and HPRJ with identical BCM kinetic energy at the instant of impact (KEI). Results revealed that participants produced higher power and lower force outputs at HPRJ (p < 0.01). The rate of force development was larger in VDJ, while hip movement was less in HPRJ. The use of the presented methodology provided the means to reliably determine the exact BCM release height during the execution of the examined jumps. This provided an accurate determination of the amount of KEI, being the main parameter of calculating load during plyometric exercise. Full article
Show Figures

Figure 1

Article
Relationship between Swimming Velocity and Trunk Twist Motion in Short-Distance Crawl Swimming
Biomechanics 2023, 3(2), 193-203; https://doi.org/10.3390/biomechanics3020017 - 19 Apr 2023
Viewed by 1407
Abstract
This study aimed to estimate the trunk twist angle from the shoulder and hip rotation angles in short-distance crawl swimming and to elucidate the twist motion of the relationship between the trunk and the rotation angular velocity in response to changes in swimming [...] Read more.
This study aimed to estimate the trunk twist angle from the shoulder and hip rotation angles in short-distance crawl swimming and to elucidate the twist motion of the relationship between the trunk and the rotation angular velocity in response to changes in swimming speed. Swimming speed during the experimental trials was computed from the subject’s best times in the 50 and 100 m crawl swims. Wireless self-luminous LED markers were attached to seven locations on the body. The actual coordinate values of the LED markers were obtained using 18 cameras for underwater movements and 4 on the water for above-water movements. A comparison of the rate of change between trials revealed a high correlation (r = 0.722, p < 0.01) between the twist angle and shoulder rotation angular velocity in the Push phase. In the same phase, a high correlation (r = 0.748, p < 0.01) was also found between the twist angle and the angular velocity of hip rotation. These results suggest that swimmers increase the twist angle of their trunks to obtain a higher swimming speed. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

Article
Inter-Professional and Methodological Agreement in Using the Cutting Movement Assessment Score (CMAS)
Biomechanics 2023, 3(2), 181-192; https://doi.org/10.3390/biomechanics3020016 - 07 Apr 2023
Viewed by 720
Abstract
Background: The cutting movement assessment score (CMAS) provides a qualitative assessment of the side-step cutting (S-SC) technique. Previous research has been undertaken primarily by biomechanists experienced with S-SC evaluations. Little is known about the agreement between various sports science and medicine practitioners to [...] Read more.
Background: The cutting movement assessment score (CMAS) provides a qualitative assessment of the side-step cutting (S-SC) technique. Previous research has been undertaken primarily by biomechanists experienced with S-SC evaluations. Little is known about the agreement between various sports science and medicine practitioners to ascertain whether the tool can be used effectively by different practitioners in the field. Currently, the CMAS uses three camera views (CVS) to undertake the evaluation, and it would be worthwhile to know whether the CMAS can be effectively conducted with fewer camera views to improve clinical utility. Therefore, the aim of the study was to examine the inter-rater agreement between different sports science and medicine practitioners and agreement between using different CVS to evaluate the S-SC technique using the CMAS. Methods: Video data were collected from 12 male rugby union players performing a 45° S-SC manoeuvre toward both the left and right directions. Five different sports science and medicine practitioners evaluated footage from three cameras of one left and one right trial from each player using the CMAS. Twelve different trials were also evaluated by the sports rehabilitator using single and multiple CVS. Agreements (percentage; Kappa coefficients (K)) between different practitioners and configurations of the CVS were explored. Results: Good to excellent inter-rater agreements were found between all practitioners for total score (K = 0.63–0.84), with moderate to excellent inter-rater agreements observed across all items of the CMAS (K = 0.5–1.0). Excellent agreement was found between using three CVS vs. two CVS that included at least a sagittal view (K = 0.96–0.97). Lower agreement (K = 0.83) was found between angle-frontal views with three CVS. Conclusions: The CMAS can be used effectively by various practitioners to evaluate the movement quality of S-SC. The use of two CVS that include at least a sagittal plane view would suffice to evaluate the S-SC technique against the CMAS. Full article
(This article belongs to the Topic Human Movement Analysis)
Show Figures

Figure 1

Article
A Simple, Efficient Method for an Automatic Adjustment of the Lumbar Curvature Alignment in an MBS Model of the Spine
Biomechanics 2023, 3(2), 166-180; https://doi.org/10.3390/biomechanics3020015 - 03 Apr 2023
Viewed by 983
Abstract
In many fields of spinal health care, efforts have been made to offer individualized products and therapy tailored to the patient. Therefore, the prevailing alignment of the spine must be considered, which varies from person to person and depends on the movement and [...] Read more.
In many fields of spinal health care, efforts have been made to offer individualized products and therapy tailored to the patient. Therefore, the prevailing alignment of the spine must be considered, which varies from person to person and depends on the movement and loading situation. With the help of patient-specific simulation models of the spine, the geometrical parameters in a specific body position can be analyzed, and the load situation of the spinal structures during dynamic processes can be assessed. However, to enable the future usability of such simulation models in medical reality, as many patient-specific conditions as possible need to be considered. Another critical requirement is that simulation models must be quickly and easily created for use in clinical routine. Building new or adapting existing spine multibody simulation (MBS) models is time-consuming due to their complex structure. To overcome this limitation, we developed a simple, efficient method by which to automatically adjust the lumbar curvature orientation of the spine model. The method extracts a new 3D lordosis curve from patient-specific data in the preprocessing step. Then the vertebrae and all linked spinal structures of an existing spinal simulation model are transformed so that the lumbar lordosis follows the curve obtained in the first part of the method. To validate the proposed approach, three independent experts measured the Cobb angle in the source and the generated spine alignments. We calculated a mean absolute error of 1.29° between the generated samples and the corresponded ground truth. Furthermore, the minor deviation in the root mean square error (RMSE) of 0.0012 m2 between the areas under the alignment curves in the original and target lordosis curvatures indicated the accuracy of the proposed method. The proposed method demonstrated that a new patient-specific simulation model can be generated in a short time from any suitable data source. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

Back to TopTop