Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (777)

Search Parameters:
Journal = JMMP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Determination of the Influence of the Tool Side Stress Superposition and Tool Geometry on the Cut Surface Quality during Precision Shear Cutting
J. Manuf. Mater. Process. 2023, 7(4), 145; https://doi.org/10.3390/jmmp7040145 - 08 Aug 2023
Viewed by 97
Abstract
Shearing high-strength steels often leads to a subpar cut quality and excessive stress on the tool components. To enhance the quality of the cut surface, intricate techniques like fine blanking are commonly employed. However, for applications with lower quality requirements, precision shear cutting [...] Read more.
Shearing high-strength steels often leads to a subpar cut quality and excessive stress on the tool components. To enhance the quality of the cut surface, intricate techniques like fine blanking are commonly employed. However, for applications with lower quality requirements, precision shear cutting offers an alternative solution. This research paper introduces a novel approach to directly superimpose radial stress on a workpiece during the precision shear cutting process and showcases for the first time how the application of direct stress superimposition can impact the cut surface by concurrently modifying the shear cutting edge and punch surface. A statistical experimental design is employed to investigate the interrelationships between the parameters and their effects. The results indicate that the overall cut quality, including cylindricity, clean-cut angle, rollover height, and tool stress, defined by punch force and retraction force, is influenced by the superimposed stress. Regarding the clean-cut zone, the statistical significance of direct radially superimposed stress was not observed, except when interacting with sheet thickness and clearance. Additionally, the sheet thickness and cutting gap emerged as significant parameters affecting the overall quality of the cut surface. Full article
Show Figures

Figure 1

Article
Optimization of Selective Laser Sintering Three-Dimensional Printing of Thermoplastic Polyurethane Elastomer: A Statistical Approach
J. Manuf. Mater. Process. 2023, 7(4), 144; https://doi.org/10.3390/jmmp7040144 - 08 Aug 2023
Viewed by 173
Abstract
This research addresses the challenge of determining the optimal parameters for the selective laser sintering (SLS) process using thermoplastic polyurethane elastomer (TPU) flexa black powder to achieve high-quality SLS parts. This study focuses on two key printing process parameters, namely layer thickness and [...] Read more.
This research addresses the challenge of determining the optimal parameters for the selective laser sintering (SLS) process using thermoplastic polyurethane elastomer (TPU) flexa black powder to achieve high-quality SLS parts. This study focuses on two key printing process parameters, namely layer thickness and the laser power ratio, and evaluates their impact on four output responses: density, hardness, modulus of elasticity, and time required to produce the parts. The primary impacts and correlations of the input factors on the output responses are evaluated using response surface methodology (RSM). A particular response optimizer is used to find the optimal settings of input variables. Additionally, the rationality of the model is verified through an analysis of variance (ANOVA). The research identifies the optimal combination of process parameters as follows: a 0.11 mm layer thickness and a 1.00 laser power ratio. The corresponding predicted values of the four responses are 152.63 min, 96.96 Shore-A, 2.09 MPa, and 1.12 g/cm3 for printing time, hardness, modulus of elasticity, and density, respectively. These responses demonstrate a compatibility of 66.70% with the objective function. An experimental validation of the predicted values was conducted and the actual values obtained for printing time, hardness, modulus of elasticity, and density at the predicted input process parameters are 159.837 min, 100 Shore-A, 2.17 MPa, and 1.153 g/cm3, respectively. The errors between the predicted and experimental values for each response (time, hardness, modulus of elasticity, and density) were found to be 4.51%, 3.04%, 3.69%, and 2.69%, respectively. These errors are all below 5%, indicating the adequacy of the model. This study also comprehensively describes the influence of process parameters on the responses, which can be helpful for researchers and industry practitioners in setting process parameters of similar SLS operations. Full article
Show Figures

Figure 1

Article
Experimental Analysis and Spatial Component Impact of the Inert Cross Flow in Open-Architecture Laser Powder Bed Fusion
J. Manuf. Mater. Process. 2023, 7(4), 143; https://doi.org/10.3390/jmmp7040143 - 07 Aug 2023
Viewed by 191
Abstract
Laser-based powder bed fusion is an additive manufacturing process in which a high-power laser melts a thin layer of metal powder layer by layer to yield a three-dimensional object. An inert gas must remove process byproducts formed during laser processing to ensure a [...] Read more.
Laser-based powder bed fusion is an additive manufacturing process in which a high-power laser melts a thin layer of metal powder layer by layer to yield a three-dimensional object. An inert gas must remove process byproducts formed during laser processing to ensure a stable and consistent process. The process byproducts include a plasma plume and spatter particles. An NC sensor gantry is installed inside a bespoke open-architecture laser-based powder bed fusion system to experimentally characterize the gas velocity throughout the processing area. The flow maps are compared to manufactured samples, where the relative density and melt pools are analyzed, seeking a potential correlation between local gas flow conditions and the components. The results show a correlation between low gas flow velocities and increased porosity, leading to lower part quality. Local flow conditions across the build plate also directly impact components, highlighting the importance of optimizing the gas flow subsystem. The experimental flow analysis method enables optimization of the gas flow inlet geometry, and the data may be used to calibrate the computational modeling of the process. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

Communication
Correlating Ultrasonic Velocity in DC04 with Microstructure for Quantification of Ductile Damage
J. Manuf. Mater. Process. 2023, 7(4), 142; https://doi.org/10.3390/jmmp7040142 - 07 Aug 2023
Viewed by 221
Abstract
The detection of ductile damage by image-based methods is time-consuming and typically probes only small areas. It is therefore of great interest for various cold forming processes, such as sheet-bulk metal forming, to develop new methods that can be used during the forming [...] Read more.
The detection of ductile damage by image-based methods is time-consuming and typically probes only small areas. It is therefore of great interest for various cold forming processes, such as sheet-bulk metal forming, to develop new methods that can be used during the forming process and that enable an efficient detection of ductile damage. In the present study, ductile damage in DC04 was examined using ultrasonic testing. First, different grain sizes were set by heat treatment. Subsequently, the sheet metal was formed by cold rolling. A clear correlation between the average void diameter and the measured ultrasonic velocity could be shown. The ultrasonic velocity showed a clear decrease when the average void size increased because of the increasing forming degree. The ultrasonic measurements were finally employed to calculate a damage parameter D to determine the amount of ductile damage in the microstructure for different grain sizes after cold rolling. Full article
(This article belongs to the Special Issue Advances in Metal Forming and Thermomechanical Processing)
Show Figures

Figure 1

Article
The Influence of Injection Temperature and Pressure on Pattern Wax Fluidity
J. Manuf. Mater. Process. 2023, 7(4), 141; https://doi.org/10.3390/jmmp7040141 - 04 Aug 2023
Viewed by 170
Abstract
In the investment casting process, the pattern made of wax is obtained in a die for further formation of a shell mold. The problem of die-filling by pattern wax is significant because it influences the quality of the final casting. This work investigates [...] Read more.
In the investment casting process, the pattern made of wax is obtained in a die for further formation of a shell mold. The problem of die-filling by pattern wax is significant because it influences the quality of the final casting. This work investigates three commercial pattern waxes’ fluidity with a newly developed injection fluidity test. It was shown that the fluidity of waxes increased with increasing injection temperature and pressure, and the simultaneous increase in temperature and pressure gives a much more significant enhancement of fluidity than an increase in temperature or pressure separately. The rheological behavior of the waxes was also investigated at different temperatures using a rotational viscosimeter, and temperature dependences of waxes’ dynamic viscosity were determined. It was shown that wax viscosity is increased more than ten times with decreasing temperature from 90 to 60 °C. A good correlation between wax fluidity and its viscosity is observed, which is different from metallic alloys, where the solidification behavior is more critical. The difference in wax flow behavior in comparison with metallic melts is associated with the difference in dynamic viscosity, which for investigated waxes and metallic melts is 3000–27,000 mPa·s and 0.5–6.5 mPa·s, respectively. The difference in investigated filled waxes’ fluidity is observed, which can be associated with the type and amount of filler. The twice-increasing fraction of cross-linked polystyrene decreases fluidity twice. At the same time, terephthalic acid has a minor influence on wax fluidity. Full article
(This article belongs to the Topic Advanced Processes in Metallurgical Technologies)
Show Figures

Figure 1

Article
Grain Refinement of Pure Magnesium for Microforming Application
J. Manuf. Mater. Process. 2023, 7(4), 140; https://doi.org/10.3390/jmmp7040140 - 04 Aug 2023
Viewed by 173
Abstract
Magnesium is a suitable candidate material for temporary implant applications, such as a miniplate, due to its biocompatibility, density, and elastic modulus comparable to that of human bone. The biodegradability property of magnesium can minimize the need for a second surgery after the [...] Read more.
Magnesium is a suitable candidate material for temporary implant applications, such as a miniplate, due to its biocompatibility, density, and elastic modulus comparable to that of human bone. The biodegradability property of magnesium can minimize the need for a second surgery after the healing process, thereby reducing costs and pain for patients. On the other hand, microforming is a promising technology for manufacturing miniplates with high production rates and good mechanical properties. However, the application of magnesium in microforming is limited and remains a challenge in resolving issues related to the size effect in microforming and the low formability of magnesium, especially at room temperature. Grain refinement and homogenization are alternative approaches to controlling the size effect in magnesium microforming and improving formability. As the grain refinement process influences the mechanical and corrosion behavior of magnesium, this research shows that the grain refinement process for pure magnesium improves the overall performance of the microforming process for implant applications. Full article
Show Figures

Figure 1

Article
Analysis of Tempering Effects on LDS-MID and PCB Substrates for HF Applications
J. Manuf. Mater. Process. 2023, 7(4), 139; https://doi.org/10.3390/jmmp7040139 - 03 Aug 2023
Viewed by 163
Abstract
Mechatronic Integrated Devices or Molded Interconnect Devices (MID) are three-dimensional (3D) circuit carriers. They are mainly fabricated by laser direct structuring (LDS) and subsequent electroless copper plating of an injection molded 3D substrate. Such LDS-MID are used in many applications today, especially antennas. [...] Read more.
Mechatronic Integrated Devices or Molded Interconnect Devices (MID) are three-dimensional (3D) circuit carriers. They are mainly fabricated by laser direct structuring (LDS) and subsequent electroless copper plating of an injection molded 3D substrate. Such LDS-MID are used in many applications today, especially antennas. However, in high frequency (HF) systems in 5G and radar applications, the demand on 3D circuit carriers and antennas increases. Electroless copper, widely used in MID, has significantly lower electrical conductivity compared to pure copper. Its lower conductivity increases electrical loss, especially at higher frequencies, where signal budget is critical. Heat treatment of electroless copper deposits can improve their conductivity and adhesion to the 3D substrates. This paper investigates the effects induced by tempering processes on the metallization of LDS-MID substrates. As a reference, HF Printed Circuit Boards (PCB) substrates are also considered. Adhesion strength and conductivity measurements, as well as permittivity and loss angle measurements up to 1 GHz, were carried out before and after tempering processes. The main influencing factors on the tempering results were found to be tempering temperature, atmosphere, and time. Process parameters like the heating rate or applied surface finishes had only a minor impact on the results. It was found that tempering LDS-MID substrates can improve the copper adhesion and lower their electrical resistance significantly, especially for plastics with a high melting temperature. Both improvements could improve the reliability of LDS-MID, especially in high frequency applications. Firstly, because increased copper adhesion can prevent delamination and, secondly, because the lowered electrical resistance indicates, in accordance with the available literature, a more ductile copper metallization and thus a lower risk of microcracks. Full article
Show Figures

Figure 1

Article
Fabrication of Bimetallic High-Strength Low-Alloy Steel/Si-Bronze Functionally Graded Materials Using Wire Arc Additive Manufacturing
J. Manuf. Mater. Process. 2023, 7(4), 138; https://doi.org/10.3390/jmmp7040138 - 31 Jul 2023
Viewed by 584
Abstract
In this paper, bimetallic functionally graded structures were fabricated using wire and arc additive manufacturing (WAAM). The bimetallic walls were built by depositing Si-Bronze and high-strength low-alloy (HSLA) steel, successively. The microstructural evolution of the built structures, especially within the fusion zone between [...] Read more.
In this paper, bimetallic functionally graded structures were fabricated using wire and arc additive manufacturing (WAAM). The bimetallic walls were built by depositing Si-Bronze and high-strength low-alloy (HSLA) steel, successively. The microstructural evolution of the built structures, especially within the fusion zone between the dissimilar alloys, was investigated in relation to their mechanical properties. The built bimetallic walls showed a high level of integrity. An overall interface length of 9 mm was investigated for microstructural evolution, elemental mapping and microhardness measurements along the building direction. Microhardness profiles showed a gradual transition in hardness passing through the diffusion zone with no evidence for intermetallic compounds. Failure of the tensile specimens occurred at the Si-Bronze region, as expected. Bending tests confirmed good ductility of the joint between the dissimilar alloys. Direct shear test results proved a shear strength comparable to that of HSLA steel. The obtained results confirm that it is appropriate to fabricate HSLA steel/Si-Bronze FGMs using WAAM technology. Full article
(This article belongs to the Special Issue Advances in Metal Additive Manufacturing/3D Printing)
Show Figures

Figure 1

Article
Manufacturing of High Conductivity, High Strength Pure Copper with Ultrafine Grain Structure
J. Manuf. Mater. Process. 2023, 7(4), 137; https://doi.org/10.3390/jmmp7040137 - 30 Jul 2023
Viewed by 456
Abstract
Applications of Copper (Cu) range from small scale applications such as microelectronics interconnects to very large high-powered applications such as railguns. In all these applications, Cu conductivity and ampacity play vital roles. In some applications such as railguns, where Cu also plays a [...] Read more.
Applications of Copper (Cu) range from small scale applications such as microelectronics interconnects to very large high-powered applications such as railguns. In all these applications, Cu conductivity and ampacity play vital roles. In some applications such as railguns, where Cu also plays a structural role, not only is high conductivity needed, but high strength, high ductility, and high wear resistance are also critical. Current technologies have achieved their full potential for producing better materials. New approaches and technologies are needed to develop superior properties. This research examines a new fabrication approach that is expected to produce Cu with superior mechanical strength, enhanced wear resistance, and increased electrical conductivity. Materials with refined grain structures were obtained by breaking down the coarse-grained Cu particles via cryogenic ball milling, followed by the consolidation of powders using cold isostatic pressing (CIP) and subsequent Continuous Equal Channel Angular Pressing (C-ECAP). The mixture of fine and ultrafine grains, with sizes between 200 nm to 2.5 µm and an average of 500 nm, was formed after ball milling at cryogenic temperatures. Further processing via C-ECAP produced nanostructured Cu with average grain sizes below 50 nm and excellent homogenous equiaxed grain shapes and random orientations. The hardness and tensile strength of the final Cu were approximately 158% and 95% higher than the traditional coarse-grained Cu bar, respectively. This material also displayed a good electrical conductivity rate of 74% International Annealed Copper Standard (IACS), which is comparable to the current Cu materials used in railgun applications. Full article
Show Figures

Figure 1

Article
ANOVA Analysis and L9 Taguchi Design for Examination of Flat Slide Burnishing of Unalloyed Structural Carbon Steel
J. Manuf. Mater. Process. 2023, 7(4), 136; https://doi.org/10.3390/jmmp7040136 - 29 Jul 2023
Viewed by 204
Abstract
Diamond burnishing is a finishing precision machining that is often used to improve the quality characteristics of previously machined surfaces. With its help, the surface roughness can be reduced, the surface hardness can be increased, and the tensile stresses remaining in the surface [...] Read more.
Diamond burnishing is a finishing precision machining that is often used to improve the quality characteristics of previously machined surfaces. With its help, the surface roughness can be reduced, the surface hardness can be increased, and the tensile stresses remaining in the surface after cutting can be transformed into compressive ones, and these changes can increase the service life of the components. Diamond burnishing was typically developed for processing cylindrical surfaces and is most often used for this type of surface. In this manuscript, we present a new method with the help of sliding burnishing, which can also be used on flat surfaces. By using the clamping head of a special tool into the main spindle of the vertical milling machine and moving it along a suitable path, the flat surface can be burnished. Machining experiments were carried out with the new type of tool on general-purpose, unalloyed, structural carbon steel samples on which the flat surfaces were previously generated by face milling. The examined parameters were the burnishing force F, the feed fb, and the number of passes (NoP). The L9 Taguchi experiment design was applied for executing flat slide burnishing, and the examination was conducted by ANOVA analysis. This research contributes to the field by providing insights into optimizing the burnishing process parameters for achieving desired surface quality in milling operations. Full article
(This article belongs to the Special Issue Advances in Precision Machining Processes)
Show Figures

Figure 1

Article
A Novel Apparatus for the Simulation of Powder Spreading Procedures in Powder-Bed-Based Additive Manufacturing Processes: Design, Calibration, and Case Study
J. Manuf. Mater. Process. 2023, 7(4), 135; https://doi.org/10.3390/jmmp7040135 - 28 Jul 2023
Viewed by 291
Abstract
Powder-bed-based additive manufacturing processes (PBAM) are sensitive to variations in powder feedstock characteristics, and yet the link between the powder properties and process performance is still not well established, which complicates the powder selection, quality control, and process improvement processes. An accurate assessment [...] Read more.
Powder-bed-based additive manufacturing processes (PBAM) are sensitive to variations in powder feedstock characteristics, and yet the link between the powder properties and process performance is still not well established, which complicates the powder selection, quality control, and process improvement processes. An accurate assessment of the powder characteristics and behavior during recoating is important and must include the flow and packing properties of the powders, which are dependent on the application conditions. To fulfill the need for suitable powder testing techniques, a novel apparatus is developed to reproduce the generic PBAM powder spreading procedure and allow the measurements of the powder bed density, surface uniformity, and spreading forces as functions of the powder characteristics and spreading conditions, including the spreading speed and the type of spreading mechanism. This equipment could be used for research and development purposes as well as for the quality control of the PBAM powder feedstock, as showcased in this paper using a gas-atomized Ti-6Al-4V powder (D10 = 25.3 µm, D50 = 35.8 µm and D90 = 46.4 µm) spread using a rigid blade by varying the recoating speed from 100 to 500 mm/s and the layer thickness from 30 to 100 µm. Full article
Show Figures

Figure 1

Article
Influence of Carbon on Additively Manufactured Ti-6Al-4V
J. Manuf. Mater. Process. 2023, 7(4), 134; https://doi.org/10.3390/jmmp7040134 - 26 Jul 2023
Viewed by 238
Abstract
In this study, the Ti-6Al-4V powder material for additive manufacturing was mixed with amorphous carbon and processed by powder bed fusion using a laser beam. The specimens were subjected to mechanical and microstructural analyses to investigate the impact of the organic constituent that [...] Read more.
In this study, the Ti-6Al-4V powder material for additive manufacturing was mixed with amorphous carbon and processed by powder bed fusion using a laser beam. The specimens were subjected to mechanical and microstructural analyses to investigate the impact of the organic constituent that may become introduced unintentionally as an impurity along the powder handling chain. It is documented that hardness and tensile strength increase with increasing carbon content up to 0.2 wt.%. Above this carbon concentration, extensive crack formation in the samples prevents successful procession. Full article
Show Figures

Figure 1

Article
Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing
J. Manuf. Mater. Process. 2023, 7(4), 133; https://doi.org/10.3390/jmmp7040133 - 24 Jul 2023
Viewed by 567
Abstract
Multi-material additive manufacturing (AM) attempts to utilize the full benefits of complex part production with a comprehensive and complementary material spectrum. In this context, this research article presents new processing strategies in the field of polymer- and metal-based multi-material AM. The investigation highlights [...] Read more.
Multi-material additive manufacturing (AM) attempts to utilize the full benefits of complex part production with a comprehensive and complementary material spectrum. In this context, this research article presents new processing strategies in the field of polymer- and metal-based multi-material AM. The investigation highlights the current progress in powder-based multi-material AM based on three successfully utilized technological approaches: additive and formative manufacturing of hybrid metal parts with locally adapted and tailored properties, material-efficient AM of multi-material polymer parts through electrophotography, and the implementation of UV-curable thermosets within the laser-based powder bed fusion of plastics. Owing to the complex requirements for the mechanical testing of multi-material parts with an emphasis on the transition area, this research targets an experimental shear testing set-up as a universal method for both metal- and polymer-based processes. The method was selected based on the common need of all technologies for the sufficient characterization of the bonding behavior between the individual materials. Full article
(This article belongs to the Special Issue Progress in Powder-Based Additive Manufacturing)
Show Figures

Figure 1

Article
Mechanical and Microstructure Characterisation of the Hypoeutectic Cast Aluminium Alloy AlSi10Mg Manufactured by the Twin-Roll Casting Process
J. Manuf. Mater. Process. 2023, 7(4), 132; https://doi.org/10.3390/jmmp7040132 - 23 Jul 2023
Viewed by 293
Abstract
Multi-material designs (MMD) are more frequently used in the automotive industry. Hereby, the combination of different materials, metal sheets, or cast components, is mechanically joined, often by forming joining processes. The cast components mostly used are high-strength, age-hardenable aluminium alloys of the Al–Si [...] Read more.
Multi-material designs (MMD) are more frequently used in the automotive industry. Hereby, the combination of different materials, metal sheets, or cast components, is mechanically joined, often by forming joining processes. The cast components mostly used are high-strength, age-hardenable aluminium alloys of the Al–Si system. Here, the low ductility of the AlSi alloys constitutes a challenge because their brittle nature causes cracks during the joining process. However, by using suitable solidification conditions, it is possible to achieve a microstructure with improved mechanical and joining properties. For this study, we used the twin-roll casting process (TRC) with water-cooled rollers to manufacture the hypoeutectic AlSi10Mg for the first time. Hereby, high solidification rates are realisable, which introduces a microstructure that is about four times finer than in the sand casting process. In particular, it is shown that a fine microstructure close to the modification with Na or Sr is achieved by the high solidification rate in the TRC process without using these elements. Based on this, the mechanical properties increase, and especially the ductility is enhanced. Subsequent joining investigations validate the positive influence of a high solidification rate since cracks in joints can be avoided. Finally, a microstructure-property-joint suitability correlation is presented. Full article
(This article belongs to the Special Issue Advances in Metal Forming and Thermomechanical Processing)
Show Figures

Figure 1

Article
Performance Evaluation of Graphene Nanofluid to Mitigate the Wear of a Diamond Tool in Micro-Machining of Ti6Al4V Alloy
J. Manuf. Mater. Process. 2023, 7(4), 131; https://doi.org/10.3390/jmmp7040131 - 19 Jul 2023
Viewed by 308
Abstract
Diamond tools are extensively used in ultra-precision machining due to their exceptional performance. However, when machining challenging materials like Ti6Al4V, diamond tools experience significant wear due to poor machining properties and catalytic effects. Tool wear not only impacts machining quality but also escalates [...] Read more.
Diamond tools are extensively used in ultra-precision machining due to their exceptional performance. However, when machining challenging materials like Ti6Al4V, diamond tools experience significant wear due to poor machining properties and catalytic effects. Tool wear not only impacts machining quality but also escalates machining costs and energy consumption. Cutting fluids are commonly employed to mitigate interfacial reactions and suppress tool wear. However, traditional cutting fluids are difficult to penetrate the cutting area and have limited lubrication and cooling capabilities. Therefore, in this paper, a technique combining graphene nanofluid and minimum-quantity lubrication (MQL) is used to suppress diamond tool wear. Firstly, micro-milling experiments for Ti6Al4V alloy are conducted using diamond tools in the graphene nanofluid MQL and under a dry environment. The experimental results show that tool wear is effectively suppressed by graphene nanofluids. Subsequently, the cutting process in both environments (graphene nanofluid MQL, dry) is simulated. The suppression mechanism of graphene nanofluid MQL for diamond tool wear is evaluated from phase transition, atomic transfer process, and amorphous behavior of diamond structure. The simulation results show that the contact characteristics, cutting force, and cutting temperature are improved by graphene nanofluids. Tool wear is effectively reduced. In addition, the removal efficiency of workpiece materials has also been improved. This work provides a technical basis for exploring the application of graphene nanofluids in diamond tool damage suppression and micro-milling. Full article
(This article belongs to the Special Issue Advances in Precision Machining Processes)
Show Figures

Figure 1

Back to TopTop