Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,281)

Search Parameters:
Journal = Microorganisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Review
A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019
Microorganisms 2023, 11(8), 2038; https://doi.org/10.3390/microorganisms11082038 - 08 Aug 2023
Abstract
The tyrosine kinase receptors of the TAM family—Tyro3, Axl and Mer—and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is [...] Read more.
The tyrosine kinase receptors of the TAM family—Tyro3, Axl and Mer—and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype. Full article
(This article belongs to the Special Issue Advances in SARS-CoV-2 Infection 2.0)
Systematic Review
Gut Microbial and Associated Metabolite Markers for Colorectal Cancer Diagnosis
Microorganisms 2023, 11(8), 2037; https://doi.org/10.3390/microorganisms11082037 - 08 Aug 2023
Viewed by 67
Abstract
Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is [...] Read more.
Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is a systematic review that aims to assess the clinical association between gut microbial markers and/or gut and circulating metabolites with ADA and CRC. Five electronic databases were searched by four independent reviewers. Only controlled trials that compared ADA and/or CRC with healthy control (HC) using either untargeted (16s rRNA gene or whole genome sequencing) or targeted (gene-based real-time PCR) identification methods for gut microbiome profile, or untargeted or targeted metabolite profiling approaches from the gut or serum/plasma, were eligible. Three independent reviewers evaluated the quality of the studies using the Cochrane Handbook for Systematic Reviews of Interventions. Twenty-four studies were eligible. We identified strong evidence of two microbial markers Fusobacterium and Porphyromonas for ADA vs. CRC, and nine microbial markers Lachnospiraceae-Lachnoclostridium, Ruminococcaceae-Ruminococcus, Parvimonas spp., Parvimonas micra, Enterobacteriaceae, Fusobacterium spp., Bacteroides, Peptostreptococcus-Peptostreptococcus stomatis, Clostridia spp.-Clostridium hylemonae, Clostridium symbiosum, and Porphyromonas- Porphyromonas asaccharolytica for CRC vs. HC. The remaining metabolite marker evidence between the various groups, including ADA vs. HC, ADA vs. HC, and CRC vs. HC, was not of sufficient quality to support additional findings. The identified gut microbial markers can be used in a panel for diagnosing ADA and/or CRC. Further research in the metabolite markers area is needed to evaluate the possibility to use in diagnostic or prognostic markers for colorectal cancer. Full article
(This article belongs to the Special Issue Gut Microbiota in Disease)
Article
Tick Species Diversity and Molecular Identification of Spotted Fever Group Rickettsiae Collected from Migratory Birds Arriving from Africa
Microorganisms 2023, 11(8), 2036; https://doi.org/10.3390/microorganisms11082036 - 08 Aug 2023
Viewed by 73
Abstract
The role of migratory birds in the spread of ticks and tick-borne pathogens along their routes from Africa to Europe is increasingly emerging. Wild birds can host several tick species, often infected by bacteria responsible for zoonoses. The aim of the study is [...] Read more.
The role of migratory birds in the spread of ticks and tick-borne pathogens along their routes from Africa to Europe is increasingly emerging. Wild birds can host several tick species, often infected by bacteria responsible for zoonoses. The aim of the study is to assess the possible introduction of exotic ticks carried by migratory birds into Italy from Africa and to detect the presence of Rickettsia species and Coxiella burnetii they may harbor. During a two-year survey, we collected ticks from migratory birds captured during their short stop-over on Ventotene Island. Specimens were first identified by morphology or sequencing molecular targets when needed, and then tested by real-time PCR for the presence of selected pathogens. A total of 91% of the collection consisted of sub-Saharan ticks, more than 50% of which were infected by Rickettsia species belonging to the spotted fever group, mainly represented by R. aeschlimannii. In contrast, the suspected C. burnetii detected in two soft ticks were confirmed as Coxiella-like endosymbionts and not the pathogen. Although there are still gaps in the knowledge of this dispersal process, our findings confirm the role of migratory birds in the spread of ticks and tick-borne pathogens, suggesting the need for a continuous surveillance to monitor the potential emergence of new diseases in Europe. Full article
(This article belongs to the Special Issue Emerging Research on Tick-Borne Pathogens and Diseases)
Show Figures

Figure 1

Article
Vaginal Microbial Network Analysis Reveals Novel Taxa Relationships among Adolescent and Young Women with Incident Sexually Transmitted Infection Compared with Those Remaining Persistently Negative over a 30-Month Period
Microorganisms 2023, 11(8), 2035; https://doi.org/10.3390/microorganisms11082035 - 08 Aug 2023
Viewed by 105
Abstract
A non-optimal vaginal microbiome (VMB) is typically diverse with a paucity of Lactobacillus crispatus and is often associated with bacterial vaginosis (BV) and sexually transmitted infections (STIs). Although compositional characterization of the VMB is well-characterized, especially for BV, knowledge remains limited on how [...] Read more.
A non-optimal vaginal microbiome (VMB) is typically diverse with a paucity of Lactobacillus crispatus and is often associated with bacterial vaginosis (BV) and sexually transmitted infections (STIs). Although compositional characterization of the VMB is well-characterized, especially for BV, knowledge remains limited on how different groups of bacteria relate to incident STIs, especially among adolescents. In this study, we compared the VMB (measured via 16S ribosomal RNA gene amplicon sequencing) of Kenyan secondary school girls with incident STIs (composite of chlamydia, gonorrhea, and trichomoniasis) to those who remained persistently negative for STIs and BV over 30 months of follow-up. We applied microbial network analysis to identify key taxa (i.e., those with the greatest connectedness in terms of linkages to other taxa), as measured by betweenness and eigenvector centralities, and sub-groups of clustered taxa. VMB networks of those who remained persistently negative reflected greater connectedness compared to the VMB from participants with STI. Taxa with the highest centralities were not correlated with relative abundance and differed between those with and without STI. Subject-level analyses indicated that sociodemographic (e.g., age and socioeconomic status) and behavioral (e.g., sexual activity) factors contribute to microbial network structure and may be of relevance when designing interventions to improve VMB health. Full article
(This article belongs to the Special Issue Microbiome in Infectious Diseases)
Show Figures

Figure 1

Review
Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health
Microorganisms 2023, 11(8), 2034; https://doi.org/10.3390/microorganisms11082034 - 08 Aug 2023
Viewed by 213
Abstract
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg [...] Read more.
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios. Full article
(This article belongs to the Special Issue Latest Review Papers in Environmental Microbiology 2023)
Show Figures

Figure 1

Article
High Ammonium Addition Changes the Diversity and Structure of Bacterial Communities in Temperate Wetland Soils of Northeastern China
Microorganisms 2023, 11(8), 2033; https://doi.org/10.3390/microorganisms11082033 - 08 Aug 2023
Viewed by 162
Abstract
The soil microbiome is an important component of wetland ecosystems and plays a pivotal role in nutrient cycling and climate regulation. Nitrogen (N) addition influences the soil’s microbial diversity, composition, and function by affecting the soil’s nutrient status. The change in soil bacterial [...] Read more.
The soil microbiome is an important component of wetland ecosystems and plays a pivotal role in nutrient cycling and climate regulation. Nitrogen (N) addition influences the soil’s microbial diversity, composition, and function by affecting the soil’s nutrient status. The change in soil bacterial diversity and composition in temperate wetland ecosystems in response to high ammonium nitrogen additions remains unclear. In this study, we used high-throughput sequencing technology to study the changes of soil bacterial diversity and community structure with increasing ammonium concentrations [CK (control, 0 kg ha−1 a−1), LN (low nitrogen addition, 40 kg ha−1 a−1), and HN (high nitrogen addition, 80 kg ha−1 a−1)] at a field experimental site in the Sanjiang Plain wetland, China. Our results showed that except for soil organic carbon (SOC), other soil physicochemical parameters, i.e., soil moisture content (SMC), dissolved organic nitrogen (DON), total nitrogen (TN), pH, ammonium nitrogen (NH4+), and dissolved organic carbon (DOC), changed significantly among three ammonium nitrogen addition concentrations (p < 0.05). Compared to CK, LN did not change soil bacterial α-diversity (p > 0.05), and HN only decreased the Shannon (p < 0.05) and did not change the Chao (p > 0.05) indices of soil bacterial community. Ammonium nitrogen addition did not significantly affect the soil’s bacterial community structure based on non-metric multidimensional scaling (NMDS) and PERMANOVA (ADONIS) analyses. Acidobacteriota (24.96–31.11%), Proteobacteria (16.82–26.78%), Chloroflexi (10.34–18.09%), Verrucomicrobiota (5.23–11.56%), and Actinobacteriota (5.63–8.75%) were the most abundant bacterial phyla in the soils. Nitrogen addition changed the complexity and stability of the bacterial network. SMC, NO3, and pH were the main drivers of the bacterial community structure. These findings indicate that enhanced atmospheric nitrogen addition may have an impact on bacterial communities in soil, and this study will allow us to better understand the response of the soil microbiome in wetland ecosystems in the framework of increasing nitrogen deposition. Full article
(This article belongs to the Special Issue Microbial Interactions in Soil 2.0)
Show Figures

Figure 1

Editorial
Diagnosis, Characterization and Treatment of Emerging Pathogens
Microorganisms 2023, 11(8), 2032; https://doi.org/10.3390/microorganisms11082032 - 08 Aug 2023
Viewed by 210
Abstract
Emerging infectious diseases are perhaps the most rapidly spreading diseases [...] Full article
(This article belongs to the Special Issue Diagnosis, Characterization and Treatment of Emerging Pathogens)
Article
Characterization of the Pathogenic Potential of the Beach Sand Microbiome and Assessment of Quicklime as a Remediation Tool
Microorganisms 2023, 11(8), 2031; https://doi.org/10.3390/microorganisms11082031 - 07 Aug 2023
Viewed by 262
Abstract
Beach sand may act as a reservoir for potential human pathogens, posing a public health risk. Despite this, the microbiological monitoring of sand microbiome is rarely performed to determine beach quality. In this study, the sand microbial population of a Northern Adriatic Sea [...] Read more.
Beach sand may act as a reservoir for potential human pathogens, posing a public health risk. Despite this, the microbiological monitoring of sand microbiome is rarely performed to determine beach quality. In this study, the sand microbial population of a Northern Adriatic Sea beach sand was profiled by microbiological (CFU counts) and molecular methods (WGS, microarray), showing significant presence of potential human pathogens including drug-resistant strains. Consistent with these results, the potential of quicklime as a restoring method was tested in vitro and on-field. Collected data showed that adding 1–3% quicklime (w/w) to sand provided an up to −99% of bacteria, fungi, and viruses, in a dose- and time-dependent manner, till 45 days post-treatment. In conclusion, data suggest that accurate monitoring of sand microbiome may be essential, besides water, to assess beach quality and safety. Moreover, first evidences of quicklime potential for sand decontamination are provided, suggesting its usage as a possible way to restore the microbiological quality of sand in highly contaminated areas. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Article
Whole Genome Sequencing and Pan-Genomic Analysis of Multidrug-Resistant Vibrio cholerae VC01 Isolated from a Clinical Sample
Microorganisms 2023, 11(8), 2030; https://doi.org/10.3390/microorganisms11082030 - 07 Aug 2023
Viewed by 207
Abstract
Cholera, a disease caused by the Vibrio cholerae bacteria, threatens public health worldwide. The organism mentioned above has a significant historical record of being identified as a prominent aquatic environmental pollutant capable of adapting its phenotypic and genotypic traits to react to host [...] Read more.
Cholera, a disease caused by the Vibrio cholerae bacteria, threatens public health worldwide. The organism mentioned above has a significant historical record of being identified as a prominent aquatic environmental pollutant capable of adapting its phenotypic and genotypic traits to react to host patients effectively. This study aims to elucidate the heterogeneity of the sporadic clinical strain of V. cholerae VC01 among patients residing in Silvasa. The study involved conducting whole-genome sequencing of the isolate obtained from patients exhibiting symptoms, including those not commonly observed in clinical practice. The strain was initially identified through a combination of biochemical analysis, microscopy, and 16s rRNA-based identification, followed by type strain-based identification. The investigation demonstrated the existence of various genetic alterations and resistance profiles against multiple drugs, particularly chloramphenicol (catB9), florfenicol (floR), oxytetracycline (tet(34)), sulfonamide (sul2), and Trimethoprim (dfrA1). The pan-genomic analysis indicated that 1099 distinct clusters were detected within the genome sequences of recent isolates worldwide. The present study helps to establish a correlation between the mutation and the coexistence of antimicrobial resistance toward current treatment. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

Article
Life Cycle Plasticity in Typhula and Pistillaria in the Arctic and the Temperate Zone
Microorganisms 2023, 11(8), 2028; https://doi.org/10.3390/microorganisms11082028 - 07 Aug 2023
Viewed by 130
Abstract
Typhulaceae Jülich is one of the cold-adapted fungal families in basidiomycetes. The representative genera, Typhula (Pers.) Fr. and Pistillaria Fr., are distinguished by the discontinuity between stems and hymenia in the former and the continuity in the latter (Fries 1821). This taxonomic [...] Read more.
Typhulaceae Jülich is one of the cold-adapted fungal families in basidiomycetes. The representative genera, Typhula (Pers.) Fr. and Pistillaria Fr., are distinguished by the discontinuity between stems and hymenia in the former and the continuity in the latter (Fries 1821). This taxonomic criterion is ambiguous, and consequently, the view of Karsten (1882) has been widely accepted: Typhula develops basidiomata from sclerotia, while basidiomata develop directly from substrata in Pistillaris. However, Corner (1970) observed basidiomata of Pistillaria petasitis S. Imai developing from sclerotia in Hokkaido, Japan. We later recognized that P. petasitis basidiomata also emerged directly from substrates on the ground in Hokkaido. An aberrant form of Typhula hyperborea H. Ekstr. was found in Upernavik, West Greenland. This specimen had a stem-like structure on a Poaceae plant, and sclerotia developed on its tip. Similar phenomena were found in other Typhula species in Japan. In this study, we aimed to elucidate the life cycle plasticity in the genera Typhula and Pistillaria through the interactions between their ecophysiological potential and environmental conditions in their localities. We collected and prepared strains of the above fungi from sclerotia or basidiomata, and we elucidated the taxonomical relationship and determined the physiological characteristics of our strains. Our findings imply that both Typhula and Pistillaria have the potential to produce sclerotia as well as the capacity for mycelial growth at ambient air temperatures in each locality where samples were collected. These findings suggest that Typhula spp. develope basidiomata not only from the sclerotia dispersed by the basidiospores but also from mycelia generated by the spore germination, which formed basidiomata multiple times, depending on their growth environments. Full article
(This article belongs to the Special Issue Microbial Ecology of Arctic and Antarctic Ecosystems)
Show Figures

Figure 1

Article
The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One
Microorganisms 2023, 11(8), 2029; https://doi.org/10.3390/microorganisms11082029 - 07 Aug 2023
Viewed by 128
Abstract
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile [...] Read more.
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile pseudocilium (i.e., a reduced posterior flagellum). Fungi provide an ideal opportunity to test and confirm the correlation between the occurrence of flagellar proteins (the ciliome) and that of the eukaryotic cilium/flagellum since the flagellum occurs in the early-branching phyla and not in terrestrial fungi. Tubulin polymerization promoting protein (TPPP)-like proteins, which contain a p25alpha domain, were also suggested to belong to the ciliome and are present in flagellated fungi. Although sanchytrids have lost many of the flagellar proteins, here it is shown that they possess a DNA sequence possibly encoding long (animal-type) TPPP, but not the fungal-type one characteristic of chytrid fungi. Phylogenetic analysis of p25alpha domains placed sanchytrids into a sister position to Blastocladiomycota, similarly to species phylogeny, with maximal support. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

Article
Carvacrol Inhibits Quorum Sensing in Opportunistic Bacterium Aeromonas hydrophila
Microorganisms 2023, 11(8), 2027; https://doi.org/10.3390/microorganisms11082027 - 07 Aug 2023
Viewed by 142
Abstract
Bacterial quorum sensing (QS) plays a crucial role in chemical communication between bacteria involving autoinducers and receptors and controls the production of virulence factors in bacteria. Therefore, reducing the concentration of signaling molecules in QS is an effective strategy for mitigating the virulence [...] Read more.
Bacterial quorum sensing (QS) plays a crucial role in chemical communication between bacteria involving autoinducers and receptors and controls the production of virulence factors in bacteria. Therefore, reducing the concentration of signaling molecules in QS is an effective strategy for mitigating the virulence of pathogenic bacteria. In this study, we demonstrated that carvacrol at 15.625 μg/mL (1/4 MIC), a natural compound found in plants, exhibits potent inhibitory activity against QS in Chromobacterium violaceum, as evidenced by a significant reduction (62.46%) in violacein production. Based on its impressive performance, carvacrol was employed as a natural QS inhibitor to suppress the pathogenicity of Aeromonas hydrophila NJ-35. This study revealed a significant reduction (36.01%) in the concentration of N-acyl-homoserine lactones (AHLs), a QS signal molecular secreted by A. hydrophila NJ-35, after 1/4 MIC carvacrol treatment. Moreover, carvacrol was found to down-regulate the expression of ahyR/I, two key genes in the QS system, which further inhibited the QS system of A. hydrophila NJ-35. Finally, based on the above results and molecular docking, we proposed that carvacrol alleviate the pathogenicity of A. hydrophila NJ-35 through QS inhibition. These results suggest that carvacrol could serve as a potential strategy for reducing the virulence of pathogenic bacteria and minimizing the reliance on antibiotics in aquaculture. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Editorial
Editorial for Special Issue “Advances in Soil Microbiome”
Microorganisms 2023, 11(8), 2026; https://doi.org/10.3390/microorganisms11082026 - 07 Aug 2023
Viewed by 158
Abstract
The soil microbiome (the community of all soil microorganisms and their surrounding environment) is a critical part of our ecological network [...] Full article
(This article belongs to the Special Issue Advances in Soil Microbiome)
Article
Aspergillus nomiae and fumigatus Ameliorating the Hypoxic Stress Induced by Waterlogging through Ethylene Metabolism in Zea mays L.
Microorganisms 2023, 11(8), 2025; https://doi.org/10.3390/microorganisms11082025 - 07 Aug 2023
Viewed by 241
Abstract
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants’ fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present [...] Read more.
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants’ fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present research was rationalized to explore the potential of the newly isolated 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophytic consortium of Aspergillus nomiae (MA1) and Aspergillus fumigatus (MA4) on maize growth promotion under WS. MA1 and MA4 were isolated from the seeds of Moringa oleifera L., which ably produced a sufficient amount of IAA, proline, phenols, and flavonoids. MA1 and MA4 proficiently colonized the root zone of maize (Zea mays L.). The symbiotic association of MA1 and MA4 promoted the growth response of maize compared with the non-inoculated plants under WS stress. Moreover, MA1- and MA4-inoculated maize plants enhanced the production of total soluble protein, sugar, lipids, phenolics, and flavonoids, with a reduction in proline content and H2O2 production. MA1- and MA4-inoculated maize plants showed an increase in the DPPH activity and antioxidant enzyme activities of CAT and POD, along with an increased level of hormonal content (GA3 and IAA) and decreased ABA and ACC contents. Optimal stomatal activity in leaf tissue and adventitious root formation at the root/stem junction was increased in MA1- and MA4-inoculated maize plants, with reduced lysigenous aerenchyma formation, ratio of cortex-to-stele, water-filled cells, and cell gaps within roots; increased tight and round cells; and intact cortical cells without damage. MA1 and MA4 induced a reduction in deformed mesophyll cells, and deteriorated epidermal and vascular bundle cells, as well as swollen metaxylem, phloem, pith, and cortical area, in maize plants under WS compared with control. Moreover, the transcript abundance of ethylene-responsive gene ZmEREB180, responsible for the induction of the WS tolerance in maize, showed optimally reduced expression sufficient for induction in WS tolerance, in MA1- and MA4-inoculated maize plants under WS compared with the non-inoculated control. The existing research supported the use of MA1 and MA4 isolates for establishing the bipartite mutualistic symbiosis in maize to assuage the adverse effects of WS by optimizing ethylene production. Full article
Show Figures

Figure 1

Article
Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in Listeria monocytogenes
Microorganisms 2023, 11(8), 2024; https://doi.org/10.3390/microorganisms11082024 - 07 Aug 2023
Viewed by 192
Abstract
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated [...] Read more.
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated two HBA-resistant mutants with mutations in the mprF gene, which codes for the Multiple Peptide Resistance Factor, an enzyme that confers resistance to cationic peptides and antibiotics in several Gram-positive bacteria by lysinylating membrane phospholipids. Besides the deletion of mprF, the deletion of dltA, which mediates the alanylation of teichoic acids, resulted in increased HBA resistance, suggesting that resistance may be caused by a reduction in positive charges on the cell surface. Additionally, we found that this resistance is maintained at low pH, indicating that the resistance mechanism is not solely based on electrostatic interactions of HBA with the cell surface. Finally, we showed that the HBA-resistant mutants display collateral sensitivity to the cationic antimicrobials polymyxin B and nisin, which may open perspectives for combining antimicrobials to prevent resistance development. Full article
(This article belongs to the Special Issue Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

Back to TopTop