Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,424)

Search Parameters:
Journal = Sci. Pharm.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Computational Assessment of Cannflavin A as a TAK1 Inhibitor: Implication as a Potential Therapeutic Target for Anti-Inflammation
Sci. Pharm. 2023, 91(3), 36; https://doi.org/10.3390/scipharm91030036 - 17 Jul 2023
Viewed by 517
Abstract
TAK1 (transforming growth factor-beta-activated kinase 1) is a crucial therapeutic target in inflammation-related diseases. This study investigated the inhibitory potential of cannflavin A, a flavonoid found in Cannabis sativa, against TAK1. Through in silico approaches, including drug-likeness analysis, ADMET assessment, molecular docking, [...] Read more.
TAK1 (transforming growth factor-beta-activated kinase 1) is a crucial therapeutic target in inflammation-related diseases. This study investigated the inhibitory potential of cannflavin A, a flavonoid found in Cannabis sativa, against TAK1. Through in silico approaches, including drug-likeness analysis, ADMET assessment, molecular docking, and molecular dynamics simulation, the binding affinity and stability of cannflavin A were evaluated. The results demonstrate that cannflavin A exhibits excellent ADMET properties and displays superior binding affinity and stability at the ATP binding site of TAK1 when compared to the known inhibitor takinib. Notably, the decomposition of binding free energy unveils critical amino acid residues involved in TAK1 binding, underscoring the inhibitory effect of cannflavin A through TAK1 inhibition. These findings highlight the potential of cannflavin A as a TAK1 inhibitor and its significant implications for the development of targeted therapies in inflammation-related diseases. Through modulating inflammatory signaling pathways, cannflavin A holds promise for more effective and tailored treatment strategies, particularly in rheumatoid arthritis. This study contributes to the current understanding of cannflavin A’s application and provides a foundation for further research and innovative approaches in targeted therapies for inflammatory conditions. Full article
Show Figures

Graphical abstract

Brief Report
Adjuvant Oligonucleotide Vaccine Increases Survival and Improves Lung Tissue Condition of B6.Cg-Tg (K18-ACE2)2 Transgenic Mice
Sci. Pharm. 2023, 91(3), 35; https://doi.org/10.3390/scipharm91030035 - 12 Jul 2023
Viewed by 491
Abstract
The main problem in creating anti-coronavirus vaccines that target mainly proteins of the outer membrane of the virus is the rapid variability in the RNA genome of the pathogen that encodes these proteins. In addition, the introduction of technologies that can affordably and [...] Read more.
The main problem in creating anti-coronavirus vaccines that target mainly proteins of the outer membrane of the virus is the rapid variability in the RNA genome of the pathogen that encodes these proteins. In addition, the introduction of technologies that can affordably and quickly produce flexible vaccine formulas that easily adapt to the emergence of new subtypes of SARS-CoV-2 is required. Universal adjuvant oligonucleotide vaccines based on conserved regions of the SARS-CoV-2 genome can take into account the dynamics of rapid changes in the virus genome, as well as be easily synthesized on automatic DNA synthesizers in large quantities in a short time. In this brief report, the effectiveness of four phosphorothioate constructs of the La-S-so-type adjuvant oligonucleotide vaccine is evaluated on B6.Cg-Tg (K18-ACE2)2 transgenic mice for the first time. In our primary trials, the oligonucleotide vaccine increased the survival rate of animals infected with SARS-CoV-2 and also reduced the destructive effects of the virus on the lung tissue of mice, activating both their innate and adaptive immunity. The obtained results show that the development of adjuvant oligonucleotide vaccine constructs of the La-S-so type is an affordable and efficient platform for the prevention of coronavirus infections, including those caused by SARS-CoV-2. Full article
Show Figures

Figure 1

Article
In Vitro Cytotoxicity and Antioxidant Studies of Dovyallis caffra-Mediated Cassiterite (SnO2) Nanoparticles
Sci. Pharm. 2023, 91(3), 34; https://doi.org/10.3390/scipharm91030034 - 07 Jul 2023
Viewed by 538
Abstract
Many medicinal plants found in Africa, such as Dovyallis caffra, have been reported to contain various bioactive compounds, which have been found to reduce metal salts into their corresponding metal-based nanoparticles. In this paper, the evaluation of synthesis, characterization, and biological properties [...] Read more.
Many medicinal plants found in Africa, such as Dovyallis caffra, have been reported to contain various bioactive compounds, which have been found to reduce metal salts into their corresponding metal-based nanoparticles. In this paper, the evaluation of synthesis, characterization, and biological properties of Dovyallis caffra-mediated cassiterite (SnO2) nanoparticles was carried out. The physicochemical properties of the synthesized material were investigated using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The characterization studies revealed that the material possessed a single tetragonal cassiterite SnO2 phase, having a cluster-like foam appearance and an irregular spherical morphology with diameters ranging from 6.57 to 34.03 nm. The biological screening revealed that the prepared cassiterite (SnO2) nanoparticles exhibited cytotoxicity against the MCF-7 breast cancer cells, with an IC50 value of 62.33 µg mL−1, better than the standard drug 5-fluorouracil, with an IC50 value of 71.21 µg mL−1. The radical scavenging potential of the nanoparticles, using the DPPH assay, showed that it possessed a slightly better activity than ascorbic acid, a common antioxidant. These results suggest that the Dovyallis caffra-mediated cassiterite (SnO2) nanoparticles possess the potential to simultaneously generate and scavenge excess ROS, which in turn results in the exhibition of good cytotoxicity and antioxidant properties. Full article
Show Figures

Figure 1

Review
Chromobacterium Violaceum: A Model for Evaluating the Anti-Quorum Sensing Activities of Plant Substances
Sci. Pharm. 2023, 91(3), 33; https://doi.org/10.3390/scipharm91030033 - 03 Jul 2023
Viewed by 635
Abstract
In the new antibiotic era, the exponential increase in multiresistant bacterial strains has become the main global health problem. Many researchers have focused their efforts on exploring novel or combined strategies for combating bacterial resistance. Good knowledge of the molecular mechanisms of resistance [...] Read more.
In the new antibiotic era, the exponential increase in multiresistant bacterial strains has become the main global health problem. Many researchers have focused their efforts on exploring novel or combined strategies for combating bacterial resistance. Good knowledge of the molecular mechanisms of resistance and bacterial virulence factors as key targets provides us with a good basis for resolving the problem. One particularly attractive and promising strategy is to attack the main regulatory “network” of bacterial virulence determinants known as quorum sensing (QS). The inhibition of QS signals will be a novel means of screening more effective quorum-sensing inhibitors (QSIs) and will play a key role in the use of next-generation antimicrobials in the battle against resistance. This motivated the present review to provide a comprehensive clarification of the regulatory mechanisms of quorum-sensing signaling pathways in Chromobacterium violaceum and the discovery of potential plant quorum-sensing inhibitors. Full article
(This article belongs to the Topic Natural Products and Drug Discovery)
Show Figures

Figure 1

Review
Structural Aspect of Hydroxyethyl-Starch–Anticancer-Drug-Conjugates as State-of-the-Art Drug Carriers
Sci. Pharm. 2023, 91(3), 32; https://doi.org/10.3390/scipharm91030032 - 29 Jun 2023
Viewed by 794
Abstract
Cancer is a genetic disorder and its treatment usually requires a long time and expensive diagnosis. While chemotherapy is the most conventional approach in treating most cancers, patients often suffer from undesired side effects due to various pharmacokinetic aspects. To address this issue, [...] Read more.
Cancer is a genetic disorder and its treatment usually requires a long time and expensive diagnosis. While chemotherapy is the most conventional approach in treating most cancers, patients often suffer from undesired side effects due to various pharmacokinetic aspects. To address this issue, target-oriented drug-delivery systems (DDS) or pulsatile drug-delivery systems (PDDS) have recently been developed as an alternative tool that takes care of the entire pharmacodynamic activities of drug action. Hydroxyethyl starch (HES) has emerged as an effective clinical tool for delivering anticancer agents into target cells. These systems have demonstrated significant potential as anticancer drug carrier conjugates through their innate pharmacokinetic properties with their safety profile. This review focuses primarily on the structural aspect during the use of HES or HES-based polymers as carriers for delivering well-known anticancer drugs. This review also indicates a perspective on the long-term research needed for the sake of improving modern drug-delivery systems based on HES polymers and in the form of nanocarriers. Full article
(This article belongs to the Topic Natural Products and Drug Discovery)
Show Figures

Figure 1

Article
Analytical Investigation of Forced Oxidized Anti-VEGF IgG Molecules: A Focus on the Alterations in Antigen and Receptor Binding Activities
Sci. Pharm. 2023, 91(3), 31; https://doi.org/10.3390/scipharm91030031 - 28 Jun 2023
Viewed by 894
Abstract
Alterations in the biological activity of the molecules under stress conditions have not been documented as widely in the literature yet. This study was designed to reveal the functional impacts of various oxidation conditions on a model mAb, a commercial anti-VEGF IgG molecule. [...] Read more.
Alterations in the biological activity of the molecules under stress conditions have not been documented as widely in the literature yet. This study was designed to reveal the functional impacts of various oxidation conditions on a model mAb, a commercial anti-VEGF IgG molecule. The responses to antigen binding, cell proliferation, FcRn receptors, and C1q binding, which rarely appear in the current literature, were investigated. The authors report peptide mapping data, post-translational modification (PTM) analysis, cell proliferation performance, and antigen (VEGF), C1q, and FcRn binding activities of the mAb under various stress conditions. The oxidation-prone site of the mAb was determined as Met252 in the DTLMISR peptide. The VEGF binding activity and anti-cell proliferation activity of the mAbs did not alter, while C1q and FcRn binding capacity significantly decreased under oxidative stress conditions. The full report is vital for many scientific and industrial processes about mAbs. The authors recommend performing functional analyses in addition to the structural studies while investigating the impacts of stress factors on therapeutic mAbs. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Show Figures

Figure 1

Article
Impact of Compressional Force, Croscarmellose Sodium, and Microcrystalline Cellulose on Black Pepper Extract Tablet Properties Based on Design of Experiments Approach
Sci. Pharm. 2023, 91(3), 30; https://doi.org/10.3390/scipharm91030030 - 27 Jun 2023
Viewed by 425
Abstract
This study aimed to prepare tablets of black pepper extract using the Design of Experiments (DOE) approach. The levels of three factors—compressional force, croscarmellose sodium (CCS), and microcrystalline cellulose (MCC)—were screened using the one-factor-at-a-time technique, followed by the DOE utilizing the Box–Behnken design. [...] Read more.
This study aimed to prepare tablets of black pepper extract using the Design of Experiments (DOE) approach. The levels of three factors—compressional force, croscarmellose sodium (CCS), and microcrystalline cellulose (MCC)—were screened using the one-factor-at-a-time technique, followed by the DOE utilizing the Box–Behnken design. The respective variations for each factor were as follows: compressional force (1500–2500 psi), CCS (1–3%), and MCC (32–42%). The results indicated that compressional force significantly decreased tablet thickness and friability, while increasing hardness and prolonging disintegration time. CCS significantly shortened disintegration time but did not affect tablet thickness, hardness, and friability. MCC, on the other hand, significantly increased tablet thickness and hardness, while significantly decreasing friability. Furthermore, the study observed interactions among factors and quadratic effects of each factor, which significantly influenced tablet properties. The optimal tablet formulation consisted of 2.2% CCS, 37% MCC, and a compressional force of 2000 psi. These tablets had a weight of 198.39 ± 0.49 mg, a diameter of 9.67 ± 0.01 mm, a thickness of 1.98 ± 0.02 mm, a hardness of 7.36 ± 0.24 kP, a friability of 0.11 ± 0.02%, and a disintegration time of 5.59 ± 0.39 min. The actual values obtained using the optimal conditions closely matched the predicted values, with a low percent error (less than 5%). In conclusion, the application of the DOE approach successfully developed tablets of black pepper extract, which can be utilized as food supplement products. Full article
Show Figures

Figure 1

Article
Escherichia coli (Lilly) and Saccharomyces cerevisiae (Novo) rDNA Glucagon: An Assessment of Their Actions When Supplied Selectively to Periportal Cells in the Bivascularly Perfused Rat Liver
Sci. Pharm. 2023, 91(3), 29; https://doi.org/10.3390/scipharm91030029 - 24 Jun 2023
Viewed by 574
Abstract
The actions of Eli Lilly-rDNA glucagon and Novo Nordisk-rDNA glucagon on glycogen catabolism and related parameters were investigated using the bivascularly perfused rat liver. The technique allows glucagon to be supplied to a selective portion of the hepatic periportal region (≈39%) when the [...] Read more.
The actions of Eli Lilly-rDNA glucagon and Novo Nordisk-rDNA glucagon on glycogen catabolism and related parameters were investigated using the bivascularly perfused rat liver. The technique allows glucagon to be supplied to a selective portion of the hepatic periportal region (≈39%) when the former is infused into the hepatic artery in retrograde perfusion. Both glucagon preparations were equally effective in influencing metabolism (glucose output, glycolysis and O2 uptake) when supplied to all cells along the liver sinusoids. When only a selective periportal region of the liver was supplied with the hormone, however, the action of Novo Nordisk-rDNA glucagon was proportional to the accessible cell space, whereas the action of Eli Lilly-rDNA glucagon greatly exceeded the action that was expected for the accessible space. Chromatographically, both rDNA preparations were not pure, but their impurities were not the same. The impurities in Eli Lilly-rDNA glucagon resembled those found in the similarly acting pancreatic Eli Lilly glucagon. It was concluded that the space-extrapolating action of Eli Lilly-rDNA glucagon is caused by a yet-to-be-identified impurity. The hypothesis was raised that an impurity in certain glucagon preparations can enhance cell-to-cell propagation of the glucagon signal, possibly via gap junctional communication. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Show Figures

Figure 1

Review
New Advances and Perspectives of Influenza Prevention: Current State of the Art
Sci. Pharm. 2023, 91(2), 28; https://doi.org/10.3390/scipharm91020028 - 14 Jun 2023
Viewed by 928
Abstract
The modern world, swaddled in the benefits of civilization, has fostered the development of science and the introduction of products of technological progress. This has allowed serious individual health problems, including those associated with viral diseases, to become targets for prophylaxis, treatment, and [...] Read more.
The modern world, swaddled in the benefits of civilization, has fostered the development of science and the introduction of products of technological progress. This has allowed serious individual health problems, including those associated with viral diseases, to become targets for prophylaxis, treatment, and even cure. Human immunodeficiency viruses, hepatitis viruses, coronaviruses, and influenza viruses are among the most disturbing infectious agents in the human experience. Influenza appears to be one of the oldest viruses known to man; these viruses were among the first to cause major epidemics and pandemics in human history, collectively causing up to 0.5 million deaths worldwide each year. The main problem in the fight against influenza viruses is that they mutate constantly, which leads to molecular changes in antigens, including outer membrane glycoproteins, which play a critical role in the creation of modern vaccines. Due to the constant microevolution of the virus, influenza vaccine formulas have to be reviewed and improved every year. Today, flu vaccines represent an eternal molecular race between a person and a virus, which neither entity seems likely to win. Full article
Show Figures

Figure 1

Review
Polymeric Microneedles: An Emerging Paradigm for Advanced Biomedical Applications
Sci. Pharm. 2023, 91(2), 27; https://doi.org/10.3390/scipharm91020027 - 31 May 2023
Viewed by 1311
Abstract
Microneedles are gaining popularity as a new paradigm in the area of transdermal drug delivery for biomedical and healthcare applications. Efficient drug delivery with minimal invasion is the prime advantage of microneedles. The concept of the microneedle array provides an extensive surface area [...] Read more.
Microneedles are gaining popularity as a new paradigm in the area of transdermal drug delivery for biomedical and healthcare applications. Efficient drug delivery with minimal invasion is the prime advantage of microneedles. The concept of the microneedle array provides an extensive surface area for efficient drug delivery. Various types of inorganics (silicon, ceramic, metal, etc.) and polymeric materials are used for the fabrication of microneedles. The polymeric microneedles have various advantages over other microneedles fabricated using inorganic material, such as biocompatibility, biodegradation, and non-toxicity. The wide variety of polymers used in microneedle fabrication can provide a broad scope for drug delivery and other biomedical applications. Multiple metallic and polymeric microneedles can be functionalized by polymer coatings for various biomedical applications. The fabrication of polymeric microneedles is shifting from conventional to advanced 3D and 4D printing technology. The multifaceted biomedical applications of polymeric microneedles include drug delivery, vaccine delivery, biosensing, and diagnostic applications. Here, we provide the overview of the current and advanced information on polymers used for fabrication, the selection criteria for polymers, biomedical applications, and the regulatory perspective of polymer-based and polymer-coated microneedles, along with a patent scenario. Full article
Show Figures

Figure 1

Article
Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents
Sci. Pharm. 2023, 91(2), 26; https://doi.org/10.3390/scipharm91020026 - 16 May 2023
Cited by 1 | Viewed by 1012
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the oldest and most widely used groups of drugs nowadays. However, the problem of searching for and creating new NSAIDs remains open, primarily due to the risks owing to their short- and long-term use. In this [...] Read more.
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the oldest and most widely used groups of drugs nowadays. However, the problem of searching for and creating new NSAIDs remains open, primarily due to the risks owing to their short- and long-term use. In this context, triazole-azepine hybrid molecules are attractive and prospective objects for the rational design of novel potential NSAIDs. In the present work studies of 3-aryl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines as potential non-steroidal anti-inflammatory agents are reported. Evaluation of drug-like properties for all tested triazole-azepine hybrids was performed in silico using SwissADME. The screening of analgesic and anti-inflammatory activities was performed in vivo using acid-induced writhing and carrageenin-induced hind paw oedema models in mice. Derivatives with activity levels more potent compared with reference drugs ketorolac and diclofenac sodium were identified. Preliminary SAR was performed based on the screening results. Full article
Show Figures

Figure 1

Article
Effect of Etifoxine on Locomotor Activity and Passive Learning in Rats with Diazepam-Induced Cognitive Deficit
Sci. Pharm. 2023, 91(2), 25; https://doi.org/10.3390/scipharm91020025 - 04 May 2023
Viewed by 1032
Abstract
Etifoxine is an anxiolytic drug with a dual mechanism of action. In contrast to conventional benzodiazepine anxiolytics, which induce cognitive dysfunction and myorelaxation, no memory impairment nor a decrease in motor activity is observed with etifoxine. This study aims to evaluate the effects [...] Read more.
Etifoxine is an anxiolytic drug with a dual mechanism of action. In contrast to conventional benzodiazepine anxiolytics, which induce cognitive dysfunction and myorelaxation, no memory impairment nor a decrease in motor activity is observed with etifoxine. This study aims to evaluate the effects of etifoxine on locomotor activity and passive learning in rats with diazepam-induced memory deficit. Male Wistar rats were treated intraperitoneally for 7 days with: (1) saline; (2) diazepam 2.5 mg/kg bw or (3) diazepam 2.5 mg/kg bw and etifoxine in a dose of 50 mg/kg bw. Activity cage test was used for evaluation of locomotor activity, and step-through and step-down tests were performed to study the passive learning. Etifoxine increased the number of horizontal movements on the 7th and 14th days of the experiment. The drug exhibits anti-amnesic effect in a model of diazepam-induced anterograde amnesia by enhancing long-term memory in passive learning tests. The data obtained suggest that etifoxine can reduce the benzodiazepine-induced cognitive deficit. Moreover, such a combination can alleviate the negative influence of benzodiazepines on locomotor activity. However, additional studies are necessary to translate these results into clinical practice. Full article
Show Figures

Figure 1

Review
Effectiveness of Zingiber montanum Herbal Compress Remedy for Pain Management: An Updated Systematic Review and Meta-Analysis
Sci. Pharm. 2023, 91(2), 24; https://doi.org/10.3390/scipharm91020024 - 03 May 2023
Viewed by 1209
Abstract
The Zingiber montanum herbal compress remedy is a type of herbal medicine that can be used as an alternative treatment for improving pain symptoms. This study aimed to evaluate the clinical efficacy of a Z. montanum herbal compress remedy for pain relief. PubMed, [...] Read more.
The Zingiber montanum herbal compress remedy is a type of herbal medicine that can be used as an alternative treatment for improving pain symptoms. This study aimed to evaluate the clinical efficacy of a Z. montanum herbal compress remedy for pain relief. PubMed, Scopus, ScienceDirect, and Thai databases were systematically searched for relevant articles published from inception to December 2022. Only randomized clinical trials (RCTs) wherein the efficacy of the Z. montanum remedy was compared to that of a placebo or non-steroidal anti-inflammatory drugs (NSAIDs) were included. Six RCTs with a total of 812 patients were included in the analysis. The efficacy of the Z. montanum remedy had a significantly decreased pain score compared to the placebo (SMD = −0.63; 95% CI = −1.20, −0.06; I2 = 90%), but there was no significant difference when compared to NSAIDs (SMD = −0.61; 95% CI = −1.41, 0.81; I2 = 73%). Moreover, the efficacy of the Z. montanum remedy in terms of the flexibility score (SMD = 0.59; 95% CI −0.56, 1.74; I2 = 86.0%) and quality of life (SMD = 0.34; 95% CI −0.38, 1.05; I2 = 81.0%) was similar to that of the placebo. This meta-analysis demonstrates that the use of the Z. montanum herbal compress remedy significantly reduces the pain scores reported by patients. Full article
(This article belongs to the Topic Natural Products and Drug Discovery)
Show Figures

Figure 1

Article
Comparative Evaluation of Metformin and Metronidazole Release from Oral Lyophilisates with Different Methods
Sci. Pharm. 2023, 91(2), 23; https://doi.org/10.3390/scipharm91020023 - 25 Apr 2023
Viewed by 1195
Abstract
The aim of this study is to compare three different dissolution methods to assess the drug release from oral lyophilisates, based on interpolyelectrolyte complexes (IPECs). IPECs were prepared by mixing solutions of a linear polymer, Eudragit® EPO, with a polymer with a [...] Read more.
The aim of this study is to compare three different dissolution methods to assess the drug release from oral lyophilisates, based on interpolyelectrolyte complexes (IPECs). IPECs were prepared by mixing solutions of a linear polymer, Eudragit® EPO, with a polymer with a cross-linked structure, Noveon® AA-1 or Carbopol® 10 Ultrez (in ratios of 1:2 and 1:1, respectively). Metformin or metronidazole were used as model drugs to achieve a systemic or local effect. A comparative assessment of the drug release kinetics was carried out using artificial saliva and three different set-ups: a paddle stirrer (USP apparatus 2), a flow cell (USP apparatus 4) and a Franz diffusion cell. The results demonstrated that oral lyophilisates disintegrated within 1 min. In the case of metformin, the drug release was completed in about 90 min independently of the set-up. The static conditions in the Franz diffusion cell and USP apparatus 2 permitted the aggregation of the IPEC; therefore, the release profiles show a significant difference compared to the USP apparatus 4. Full article
Show Figures

Figure 1

Article
Photoprotector Effect of Emulsions with Yerba-Mate (Ilex paraguariensis) Extract
Sci. Pharm. 2023, 91(2), 22; https://doi.org/10.3390/scipharm91020022 - 23 Apr 2023
Viewed by 1031
Abstract
Yerba-mate contains in its composition a high concentration of phenolic compounds. This class of secondary metabolites exhibits strong values of molar absorptivity on ultraviolet and visible wavelengths. This study evaluated the effect of yerba-mate extracts on the in vitro solar protection factor (SPF) [...] Read more.
Yerba-mate contains in its composition a high concentration of phenolic compounds. This class of secondary metabolites exhibits strong values of molar absorptivity on ultraviolet and visible wavelengths. This study evaluated the effect of yerba-mate extracts on the in vitro solar protection factor (SPF) value of sunscreen formulations. The sunscreen formulations were prepared to have non-ionic lotion as a basis and yerba-mate extract and/or avobenzone as active agents. The SPF and resveratrol protective effect of the formulations were determined by UV-vis spectrometry. A synergic effect between the yerba-mate extract and avobenzone on the SPF was found. Yerba-mate extract at 5% improved the SPF of the avobenzone 5% formulation from 28.46 ± 5.45 to 40.48 ± 0.84. Yerba-mate extract at 5% avoided resveratrol degradation by ultraviolet radiation. At this same concentration, avobenzone produced a smaller effect than yerba-mate extracts in resveratrol protection. The formulations with yerba-mate + avobenzone presented smaller changes in pH values during 12 days of storage. The spreadability profile of yerba-mate and avobenzone formulations was similar to the profile of avobenzone formulations. The results reported here show the suitability of the yerba-mate extract use in photoprotective formulations, highlighting their in vitro effect and opening possibilities for new investigations exploring this property. Full article
Show Figures

Figure 1

Back to TopTop