Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,074)

Search Parameters:
Journal = Micromachines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Editorial
Editorial for the Special Issue on Physics in Micro/Nano Devices: From Fundamental to Application
Micromachines 2023, 14(8), 1571; https://doi.org/10.3390/mi14081571 - 08 Aug 2023
Viewed by 131
Abstract
With the continuous miniaturization of micro/nano devices, it is of great importance to study the physics of these devices, both for fundamental and practical research [...] Full article
(This article belongs to the Special Issue Physics in Micro/Nano Devices: From Fundamental to Application)
Article
Continuous Flow Separation of Live and Dead Cells Using Gravity Sedimentation
Micromachines 2023, 14(8), 1570; https://doi.org/10.3390/mi14081570 - 08 Aug 2023
Viewed by 111
Abstract
The separation of target cell species is an important step for various biomedical applications ranging from single cell studies to drug testing and cell-based therapies. The purity of cell solutions is critical for therapeutic application. For example, dead cells and debris can negatively [...] Read more.
The separation of target cell species is an important step for various biomedical applications ranging from single cell studies to drug testing and cell-based therapies. The purity of cell solutions is critical for therapeutic application. For example, dead cells and debris can negatively affect the efficacy of cell-based therapies. This study presents a cost-effective method for the continuous separation of live and dead cells using a 3D resin-printed microfluidic device. Saccharomyces cerevisiae yeast cells are used for cell separation experiments. Both numerical and experimental studies are presented to show the effectiveness of the presented device for the isolation of dead cells from cell solutions. The experimental results show that the 3D-printed microfluidic device successfully separates live and dead cells based on density differences. Separation efficiencies of over 95% are achieved at optimum flow rates, resulting in purer cell populations in the outlets. This study highlights the simplicity, cost-effectiveness, and potential applications of the 3D-printed microfluidic device for cell separation. The implementation of 3D printing technology in microfluidics holds promise for advancing the field and enabling the production of customized devices for biomedical applications. Full article
Show Figures

Figure 1

Article
Structural Design and Simulation of a Multi-Channel and Dual Working Condition Wafer Defect Inspection Prototype
Micromachines 2023, 14(8), 1568; https://doi.org/10.3390/mi14081568 - 07 Aug 2023
Viewed by 137
Abstract
Detecting and classifying defects on unpatterned wafers is a key part of wafer front-end inspection. Defect inspection schemes vary depending on the type and location of the defects. In this paper, the structure of the prototype is designed to meet the requirements of [...] Read more.
Detecting and classifying defects on unpatterned wafers is a key part of wafer front-end inspection. Defect inspection schemes vary depending on the type and location of the defects. In this paper, the structure of the prototype is designed to meet the requirements of wafer surface and edge defect inspection. This prototype has four inspection channels: scattering, reflection, phase, and contour, with two working conditions: surface and edge inspection. The key structure of the prototype was simulated using Ansys. The simulation results show that the maximum deformation of the optical detection subsystem is 19.5 μm and the fundamental frequency of the prototype is 96.9 Hz; thus, these results meet the requirements of optical performance stability and structural design. The experimental results show that the prototype meets the requirements of the inspection sensitivity better than 200 nm equivalent PSL spherical defects. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 2nd Edition)
Show Figures

Figure 1

Article
An 8–18 GHz 90° Switched T-Type Phase Shifter
Micromachines 2023, 14(8), 1569; https://doi.org/10.3390/mi14081569 - 07 Aug 2023
Viewed by 139
Abstract
This paper proposes a novel 8–18 GHz 90° switched T-type phase shifter (TPS). In contrast to the conventional TPS, the proposed TPS adds a compensation capacitance to greatly enhance the phase shifting capacity. Moreover, the designed structure also integrates a filtering compensation network, [...] Read more.
This paper proposes a novel 8–18 GHz 90° switched T-type phase shifter (TPS). In contrast to the conventional TPS, the proposed TPS adds a compensation capacitance to greatly enhance the phase shifting capacity. Moreover, the designed structure also integrates a filtering compensation network, which can effectively achieve a flat relative phase shift in a wide band. The proposed 90° TPS is fabricated using 0.15 μm GaAs pHEMT technology. The TPS achieves homogeneous phase shift at 8–18 GHz, with the measured phase error of less than ±1.5°. The insertion loss of the proposed phase shifter is 1.3–2.6 dB, and the chip size is merely 0.53 × 0.86 mm2. Thanks to these excellent performance characteristics, the designed phase shifter is well-suited for ultra-wideband wireless communication and radar systems. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Components and Devices)
Show Figures

Figure 1

Article
Cr2S3-Cr2O3/Poly-2-aminobenzene-1-thiol as a Highly Photocatalytic Material for Green Hydrogen Generation from Sewage Water
Micromachines 2023, 14(8), 1567; https://doi.org/10.3390/mi14081567 - 07 Aug 2023
Viewed by 137
Abstract
This study highlights the utilization of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode for efficient and highly sensitive photon absorption, enabling the generation of green hydrogen through the production of hot electrons upon illumination. The nanocomposite is synthesized [...] Read more.
This study highlights the utilization of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode for efficient and highly sensitive photon absorption, enabling the generation of green hydrogen through the production of hot electrons upon illumination. The nanocomposite is synthesized via a one-pot reaction using K2Cr2O7 and 2-aminobenzene-1-thiol monomer, and the presence of Cr2S3-Cr2O3 is confirmed by XRD and XPS analysis within the composite. The optical properties of the Cr2S3-Cr2O3/poly-2-aminobenzene-1-thiol composite exhibit wide spectral coverage from UV to IR, with a bandgap of 1.6 eV. The diverse morphological behavior observed in the composite correlates with its optical properties, with the cleft spherical particles of the pure polymer transforming into rod-like structures embedded within the polymer matrix. The generated hydrogen gas demonstrates an impressive efficiency of 40.5 mole/10.cm2.h through electrochemical testing. The current density (Jph) values are evaluated under different light frequencies using optical filters ranging from 730 to 340 nm, resulting in Jph values of 0.012 and 0.014 mA.cm−2, respectively. These findings present a promising avenue as green hydrogen for industrial applications, leveraging the potential of the Cr2S3-Cr2O3/P2ABT nanocomposite photoelectrode. Full article
(This article belongs to the Special Issue Sustainable Materials for Energy and Environmental Applications)
Show Figures

Figure 1

Article
Simulation Methods for MEMS S&A Devices for 2D Fuze Overload Loading
Micromachines 2023, 14(8), 1566; https://doi.org/10.3390/mi14081566 - 07 Aug 2023
Viewed by 186
Abstract
An experimental testing system for the two-dimensional (2D) fuze overload loading process was designed to address the loading issues of recoil overload and centrifugal overload in fuze safety and arming (S&A) device. By incorporating centrifuge rotation energy storage, impact acceleration simulation, and equivalent [...] Read more.
An experimental testing system for the two-dimensional (2D) fuze overload loading process was designed to address the loading issues of recoil overload and centrifugal overload in fuze safety and arming (S&A) device. By incorporating centrifuge rotation energy storage, impact acceleration simulation, and equivalent centrifugal rotation simulation, a block equipped with a fuze S&A device accelerated instantly upon having impact from a centrifuge-driven impact hammer, simulating recoil overload loading. The impact hammer was retracted instantaneously by adopting an electromagnetic brake, which resulted in the centrifugal rotation of the block around its track, to simulate the centrifugal overload loading. The dynamic equations of the experimental testing system and the equations of impact hammer motions were established, whereby the rotation speed of the centrifuge and the braking force of the electromagnetic brake were calculated and selected. A dynamic model of the collision between the impact hammer and block was established using ANSYS/LS-DYNA software for simulation analysis. The acceleration curves of the recoil overload and centrifugal overload with variations in the centrifuge speed, cushion material, and buffer thickness were obtained, which verified the feasibility of the proposed loading simulation method. Two-dimensional overload loading simulation tests were performed using the developed experimental testing system, and the acceleration curves of the recoil overload and centrifugal overload were measured. The test results indicated that the proposed system can accomplish 2D overload loading simulations for a recoil overload of several 10,000× g and centrifugal overload of several 1000× g. Full article
(This article belongs to the Special Issue Recent Advances in N/MEMS Nonlinear Dynamics)
Show Figures

Figure 1

Article
Structural Design of MEMS Acceleration Sensor Based on PZT Plate Capacitance Detection
Micromachines 2023, 14(8), 1565; https://doi.org/10.3390/mi14081565 - 06 Aug 2023
Viewed by 226
Abstract
The problem that the fuze overload signal sticks and is not easily identified by the counting layer during the high-speed intrusion of the projectile is an important factor affecting the explosion of the projectile in the specified layer. A three-pole plate dual-capacitance acceleration [...] Read more.
The problem that the fuze overload signal sticks and is not easily identified by the counting layer during the high-speed intrusion of the projectile is an important factor affecting the explosion of the projectile in the specified layer. A three-pole plate dual-capacitance acceleration sensor based on the capacitive sensor principle is constructed in this paper. The modal simulation of the sensor structure is carried out using COMSOL 6.1 simulation software, the structural parameters of the sensor are derived from the mechanical properties of the model, and finally the physical sensor is processed and fabricated using the derived structural parameters. The mechanical impact characteristics of the model under different overloads were investigated using ANSYS/LS-DYNA, and the numerical simulation of the projectile intrusion into the three-layer concrete slab was carried out using LS-DYNA. Under different overload conditions, the sensor was tested using the Machette’s hammer test and the output signal of the sensor was obtained. The output signal was analyzed. Finally, a sensor with self-powered output, high output voltage amplitude, and low spurious interference was obtained. The results show that the ceramic capacitive sensor has a reasonable structure, can reliably receive vibration signals, and has certain engineering applications in the intrusion meter layer. Full article
(This article belongs to the Special Issue MEMS Inertial Device)
Show Figures

Figure 1

Article
Low-Temperature Adaptive Dual-Network MXene Nanocomposite Hydrogel as Flexible Wearable Strain Sensors
Micromachines 2023, 14(8), 1563; https://doi.org/10.3390/mi14081563 - 06 Aug 2023
Viewed by 185
Abstract
Flexible electronic devices and conductive materials can be used as wearable sensors to detect human motions. However, the existing hydrogels generally have problems of weak tensile capacity, insufficient durability, and being easy to freeze at low temperatures, which greatly affect their application in [...] Read more.
Flexible electronic devices and conductive materials can be used as wearable sensors to detect human motions. However, the existing hydrogels generally have problems of weak tensile capacity, insufficient durability, and being easy to freeze at low temperatures, which greatly affect their application in the field of wearable devices. In this paper, glycerol was partially replaced by water as the solvent, agar was thermally dissolved to initiate acrylamide polymerization, and MXene was used as a conductive filler and initiator promoter to form the double network MXene-PAM/Agar organic hydrogel. The presence of MXene makes the hydrogel produce more conductive paths and enforces the hydrogel’s higher conductivity (1.02 S·m−1). The mechanical properties of hydrogels were enhanced by the double network structure, and the hydrogel had high stretchability (1300%). In addition, the hydrogel-based wearable strain sensor exhibited good sensitivity over a wide strain range (GF = 2.99, 0–200% strain). The strain sensor based on MXene-PAM/Agar hydrogel was capable of real-time monitoring of human movement signals such as fingers, wrists, arms, etc. and could maintain good working conditions even in cold environments (−26 °C). Hence, we are of the opinion that delving into this hydrogel holds the potential to broaden the scope of utilizing conductive hydrogels as flexible and wearable strain sensors, especially in chilly environments. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, and Systems)
Show Figures

Figure 1

Review
Laser-Based Manufacturing of Ceramics: A Review
Micromachines 2023, 14(8), 1564; https://doi.org/10.3390/mi14081564 - 06 Aug 2023
Viewed by 213
Abstract
Ceramics are widely used in microelectronics, semiconductor manufacturing, medical devices, aerospace, and aviation, cutting tools, precision optics, MEMS and NEMS devices, insulating components, and ceramic molds. But the fabrication and machining of the ceramic-based materials by conventional processes are always difficult due to [...] Read more.
Ceramics are widely used in microelectronics, semiconductor manufacturing, medical devices, aerospace, and aviation, cutting tools, precision optics, MEMS and NEMS devices, insulating components, and ceramic molds. But the fabrication and machining of the ceramic-based materials by conventional processes are always difficult due to their higher hardness and mechanical properties. Therefore, advanced manufacturing techniques are being preferred for these advanced materials, and out of that, laser-based processes are widely used. The benefits of laser fabrication and machining of ceramics include high precision, reduced thermal damage, non-contact processing, and the ability to work with complex geometries. Laser technology continues to advance, enabling even more intricate and diverse applications for ceramics in a wide range of industries. This paper explains various laser based ceramic processing techniques, such as selective laser sintering and melting, and laser machining techniques, such as laser drilling, etc. Identifying and optimizing the process parameters that influence the output quality of laser processed parts is the key technique to improving the quality, which is also focused on in this paper. It aims to facilitate the researchers by providing knowledge on laser-based manufacturing of ceramics and their composites to establish the field further. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication)
Show Figures

Figure 1

Article
A Comprehensive Study of CsSnI3-Based Perovskite Solar Cells with Different Hole Transporting Layers and Back Contacts
Micromachines 2023, 14(8), 1562; https://doi.org/10.3390/mi14081562 - 06 Aug 2023
Viewed by 253
Abstract
By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic [...] Read more.
By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic lead-free CsSnI3-based halide perovskite offers the advantages of enhancing the stability and degradation resistance of devices, reducing the cost of devices, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) with Spiro-OMeTAD hole transporting layer (HTL) at perovskite thickness of 330 nm is in good agreement with the previous experimental result (12.96%). By changing the perovskite thickness and work operating temperature, the maximum efficiency of 18.15% is calculated for standard devices at a perovskite thickness of 800 nm. Then, the effects of replacement of Spiro-OMeTAD with other HTLs including Cu2O, CuI, CuSCN, CuSbS2, Cu2ZnSnSe4, CBTS, CuO, MoS2, MoOx, MoO3, PTAA, P3HT, and PEDOT:PSS on photovoltaic characteristics were calculated. The device with Cu2ZnSnSe4 hole transport in the same condition shows the highest efficiency of 21.63%. The back contact also changed by considering different metals such as Ag, Cu, Fe, C, Au, W, Ni, Pd, Pt, and Se. The outcomes provide valuable insights into the efficiency improvement of CsSnI3-based PSCs by Spiro-OMeTAD substitution with other HTLs, and back-contact modification upon the comprehensive analysis of 120 devices with different configurations. Full article
(This article belongs to the Special Issue Perovskite Materials and Devices: Past, Present and Future)
Show Figures

Figure 1

Article
Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting
Micromachines 2023, 14(8), 1561; https://doi.org/10.3390/mi14081561 - 05 Aug 2023
Viewed by 213
Abstract
Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this [...] Read more.
Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this paper, we designed a microfluidic chip that can be used for continuous cell sorting, with the structural design of a curved channel and curved double side electrodes. CM factors were calculated for eight human healthy blood cells and cancerous cells using the software MyDEP, the simulation of various blood cells sorting and the simulation of the joule heat effect of the microfluidic chip were completed using the software COMSOL Multiphysics. The effect of voltage and inlet flow velocity on the simulation results was discussed using the control variables method. We found feasible parameters from simulation results under different voltages and inlet flow velocities, and the feasibility of the design was verified from multiple perspectives by measuring cell movement trajectories, cell recovery rate and separation purity. This paper provides a universal method for cell, particle and even protein sorting. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 2nd Edition)
Show Figures

Figure 1

Article
The Design of a Dynamic Configurable Packet Parser Based on FPGA
Micromachines 2023, 14(8), 1560; https://doi.org/10.3390/mi14081560 - 05 Aug 2023
Viewed by 395
Abstract
To meet the evolving demands of programmable networks and address the limitations of traditional fixed-type protocol parsers, we propose a dynamic and configurable low-latency parser implemented on an FPGA. The architecture consists of three protocol analysis modules and a TCAM-SRAM. Latency is reduced [...] Read more.
To meet the evolving demands of programmable networks and address the limitations of traditional fixed-type protocol parsers, we propose a dynamic and configurable low-latency parser implemented on an FPGA. The architecture consists of three protocol analysis modules and a TCAM-SRAM. Latency is reduced by optimizing the state machine and parallel extraction matching. At the same time, we introduce the chain mapping idea and container concept to formulate the matching and extraction rules of table entries and enhance the extensibility of the parser. Furthermore, our system supports dynamic configuration through SDN control, allowing flexible adaptation to diverse scenarios. Our design has been verified and simulated with a cocotb-based framework. The resulting architecture is implemented on Xilinx Ultrascale+ FPGAs and supports a throughput of more than 80 Gbps, with a maximum latency of only 36 nanoseconds for L4 protocol parsing. Full article
(This article belongs to the Special Issue FPGA Applications and Future Trends)
Show Figures

Figure 1

Article
A Simulation of Thermal Management Using a Diamond Substrate with Nanostructures
Micromachines 2023, 14(8), 1559; https://doi.org/10.3390/mi14081559 - 05 Aug 2023
Viewed by 195
Abstract
In recent years, the rapid progress in the field of GaN-based power devices has led to a smaller chip size and increased power usage. However, this has given rise to increasing heat aggregation, which affects the reliability and stability of these devices. To [...] Read more.
In recent years, the rapid progress in the field of GaN-based power devices has led to a smaller chip size and increased power usage. However, this has given rise to increasing heat aggregation, which affects the reliability and stability of these devices. To address this issue, diamond substrates with nanostructures were designed and investigated in this paper. The simulation results confirmed the enhanced performance of the device with diamond nanostructures, and the fabrication of a diamond substrate with nanostructures is demonstrated herein. The diamond substrate with square nanopillars 2000 nm in height exhibited optimal heat dissipation performance. Nanostructures can effectively decrease heat accumulation, resulting in a reduction in temperature from 121 °C to 114 °C. Overall, the simulation and experimental results in this work may provide guidelines and help in the development of the advanced thermal management of GaN devices using diamond micro/nanostructured substrates. Full article
(This article belongs to the Special Issue Advances in Diamond-Based Devices and Their Manufacturing)
Show Figures

Figure 1

Article
Z-Increments Online Supervisory System Based on Machine Vision for Laser Solid Forming
Micromachines 2023, 14(8), 1558; https://doi.org/10.3390/mi14081558 - 04 Aug 2023
Viewed by 225
Abstract
An improper Z-increment in laser solid forming can result in fluctuations in the off-focus amount during the manufacturing procedure, thereby exerting an influence on the precision and quality of the fabricated component. To solve this problem, this study proposes a closed-loop control system [...] Read more.
An improper Z-increment in laser solid forming can result in fluctuations in the off-focus amount during the manufacturing procedure, thereby exerting an influence on the precision and quality of the fabricated component. To solve this problem, this study proposes a closed-loop control system for a Z-increment based on machine vision monitoring. Real-time monitoring of the precise cladding height is accomplished by constructing a paraxial monitoring system, utilizing edge detection technology and an inverse perspective transformation model. This system enables the continuous assessment of the cladding height, which serves as a control signal for the regulation of the Z-increments in real-time. This ensures the maintenance of a constant off-focus amount throughout the manufacturing process. The experimental findings indicate that the proposed approach yields a maximum relative error of 1.664% in determining the cladding layer height, thereby enabling accurate detection of this parameter. Moreover, the real-time adjustment of the Z-increment quantities results in reduced standard deviations of individual cladding layer heights, and the height of the cladding layer increases. This proactive adjustment significantly enhances the stability of the manufacturing process and improves the utilization of powder material. This study can, therefore, provide effective guidance for process control and product optimization in laser solid forming. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

Review
Silicon Carbide-Based DNA Sensing Technologies
Micromachines 2023, 14(8), 1557; https://doi.org/10.3390/mi14081557 - 04 Aug 2023
Viewed by 258
Abstract
DNA sensing is critical in various applications such as the early diagnosis of diseases and the investigation of forensic evidence, food processing, agriculture, environmental protection, etc. As a wide-bandgap semiconductor with excellent chemical, physical, electrical, and biocompatible properties, silicon carbide (SiC) is a [...] Read more.
DNA sensing is critical in various applications such as the early diagnosis of diseases and the investigation of forensic evidence, food processing, agriculture, environmental protection, etc. As a wide-bandgap semiconductor with excellent chemical, physical, electrical, and biocompatible properties, silicon carbide (SiC) is a promising material for DNA sensors. In recent years, a variety of SiC-based DNA-sensing technologies have been reported, such as nanoparticles and quantum dots, nanowires, nanopillars, and nanowire-based field-effect-transistors, etc. This article aims to provide a review of SiC-based DNA sensing technologies, their functions, and testing results. Full article
Show Figures

Figure 1

Back to TopTop