Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,652)

Search Parameters:
Journal = Nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Flexible High-Performance and Screen-Printed Symmetric Supercapacitor Using Hierarchical Rodlike V3O7 Inks
Nanomaterials 2023, 13(16), 2282; https://doi.org/10.3390/nano13162282 - 08 Aug 2023
Abstract
The emergence of the Internet of things stimulates the pursuit of flexible and miniaturized supercapacitors. As an advanced technology, screen printing displays vigor and tremendous potential in fabricating supercapacitors, but the adoption of high-performance ink is a great challenge. Here, hierarchical V3 [...] Read more.
The emergence of the Internet of things stimulates the pursuit of flexible and miniaturized supercapacitors. As an advanced technology, screen printing displays vigor and tremendous potential in fabricating supercapacitors, but the adoption of high-performance ink is a great challenge. Here, hierarchical V3O7 with rodlike texture was prepared via a facile template–solvothermal route; and the morphology, component, and valence bond information are characterized meticulously. Then, the screen-printed inks composed of V3O7, acetylene black, and PVDF are formulated, and the rheological behaviors are studied detailedly. Benefitting from the orderly aligned ink, the optimal screen-printed electrode can exhibit an excellent specific capacitance of 274.5 F/g at 0.3 A/g and capacitance retention of 81.9% after 5000 cycles. In addition, a flexible V3O7 symmetrical supercapacitor (SSC) is screen-printed and assembled on the Ag current collector, exhibiting a decent areal specific capacitance of 322.5 mF/cm2 at 0.5 mA/cm2, outstanding cycling stability of 90.8% even after 5000 cycles, satisfactory maximum energy density of 129.45 μWh/cm2 at a power density of 0.42 mW/cm2, and remarkable flexibility and durability. Furthermore, a single SSC enables the showing of an actual voltage of 1.70 V after charging, and no obvious self-discharge phenomenon is found, revealing the great applied value in supply power. Therefore, this work provides a facile and low-cost reference of screen-printed ink for large-scale fabrication of flexible supercapacitors. Full article
Show Figures

Figure 1

Article
Anti-Reflective Coatings Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics
Nanomaterials 2023, 13(16), 2281; https://doi.org/10.3390/nano13162281 - 08 Aug 2023
Viewed by 105
Abstract
The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming [...] Read more.
The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming an anti-reflective coating on hybrid polymer micro-lenses fabricated by employing LDW without changing their geometry. Such coating deposited via atomic layer deposition (ALD) decreased the reflection from 3.3% to 0.1% at a wavelength of 633 nm for one surface of hybrid organic–inorganic SZ2080™ material. This research validates the compatibility of ALD with LDW 3D multiphoton lithography synergistically, expanding its applications on optical grade sub-100 μm scale micro-optics. Full article
(This article belongs to the Special Issue Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends)
Show Figures

Figure 1

Article
Effect of Water on CO2 Adsorption on CaNaY Zeolite: Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) Complexes
Nanomaterials 2023, 13(16), 2278; https://doi.org/10.3390/nano13162278 - 08 Aug 2023
Viewed by 103
Abstract
Efficient CO2 capture materials must possess a high adsorption capacity, suitable CO2 adsorption enthalpy and resistance to water vapor. We have recently reported that Ca2+ cations exchanged in FAU zeolite can attach up to three CO2 molecules. Here we [...] Read more.
Efficient CO2 capture materials must possess a high adsorption capacity, suitable CO2 adsorption enthalpy and resistance to water vapor. We have recently reported that Ca2+ cations exchanged in FAU zeolite can attach up to three CO2 molecules. Here we report the effect of water on the adsorption of CO2. Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) mixed ligand complexes were established. The Ca2+(H2O)(CO2) species are readily formed even at ambient temperature and are characterized by ν(12CO2) and ν(13CO2) infrared bands at 2358 and 2293 cm−1, respectively. The Ca2+(H2O)(CO2)2 species are produced at low temperature and are identified by a ν(13CO2) band at 2291 cm−1. In the presence of large amounts of water, Ca2+(H2O)2(CO2) complexes were also evidenced by ν(12CO2) and ν(13CO2) bands at 2348 and 2283 cm−1, respectively. The results demonstrate that, although it has a negative effect on CO2 adsorption uptake, water in moderate amounts does not block CO2 adsorption sites. Full article
Show Figures

Figure 1

Article
Structural and Mechanical Properties of Doped Tobermorite
Nanomaterials 2023, 13(16), 2279; https://doi.org/10.3390/nano13162279 - 08 Aug 2023
Viewed by 98
Abstract
As calcium silicate hydrate (C-S-H) is the main binding phase in concrete, understanding the doping behavior of impurity elements in it is important for optimizing the structure of cementitious materials. However, most of the current studies focus on cement clinker, and the doping [...] Read more.
As calcium silicate hydrate (C-S-H) is the main binding phase in concrete, understanding the doping behavior of impurity elements in it is important for optimizing the structure of cementitious materials. However, most of the current studies focus on cement clinker, and the doping mechanism of impurity elements in hydrated calcium silicate is not yet fully understood. The hydrated calcium silicate component is complex, and its structure is very similar to that of the tobermorite mineral family. In this study, the effects of three different dopants (Mg, Sr and Ba) on a representing structure of C-S-H—tobermorite—was systematically explored using densify functional theory (DFT) calculations. The calculations show that Mg doping leads to a decrease in lattice volume and causes obvious structure and coordination changes of magnesium–oxygen polyhedra. This may be the reason why high formation energy is required for the Mg-doped tobermorite. Meanwhile, doping only increases the volume of the Sr- and Ba-centered oxygen polyhedra. Specifically, the Mg-doped structure exhibits higher chemical stability and shorter interatomic bonding. In addition, although Mg doping distorts the structure, the stronger chemical bonding between Mg-O atoms also improves the compressive (~1.99% on average) and shear resistance (~2.74% on average) of tobermorillonite according to the elastic modulus and has less effect on the anisotropy of the Young’s modulus. Our results suggest that Mg doping is a promising strategy for the optimized structural design of C-S-H. Full article
(This article belongs to the Special Issue Nanomechanics, Plasticity and Fracture)
Show Figures

Figure 1

Article
Magnetic Properties of a High-Pressure Torsion Deformed Co-Zr Alloy
Nanomaterials 2023, 13(16), 2280; https://doi.org/10.3390/nano13162280 - 08 Aug 2023
Viewed by 114
Abstract
Co-Zr amorphous alloys exhibit soft magnetic properties, whereas the Co-rich crystalline magnetic phases in this alloy system displayed a hard magnetic behavior. In this study, an initial two-phase Co-Zr composite with an overall composition of 75 at.% Co and 25 at.% Zr was [...] Read more.
Co-Zr amorphous alloys exhibit soft magnetic properties, whereas the Co-rich crystalline magnetic phases in this alloy system displayed a hard magnetic behavior. In this study, an initial two-phase Co-Zr composite with an overall composition of 75 at.% Co and 25 at.% Zr was processed by high-pressure torsion (HPT), and the effects of severe plastic deformation and subsequent thermal treatment on the composite’s structural evolution and its magnetic properties were investigated. HPT processing allowed us to achieve an amorphous microstructure with low coercivity in its as-deformed state. To further tune the alloy’s magnetic properties and study its crystallization behavior, various annealed states were investigated. The microstructural properties were correlated with the magnetic properties, and a decreasing coercivity with increasing annealing temperatures was observed despite the onset of crystallization in the amorphous alloy. At higher annealing temperatures, coercivity increased again. The results appear promising for obtaining tuneable rare-earth free magnetic materials by severe plastic deformation. Full article
Show Figures

Figure 1

Article
Development and Upscaling of SiO2@TiO2 Core-Shell Nanoparticles for Methylene Blue Removal
Nanomaterials 2023, 13(16), 2276; https://doi.org/10.3390/nano13162276 - 08 Aug 2023
Viewed by 124
Abstract
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the [...] Read more.
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the classical Stöber method and then coated with a thin layer of TiO2, followed by calcination or hydrothermal treatments. The properties of SiO2@TiO2 core-shell NPs resulted from the synergy between the photocatalytic properties of TiO2 and the adsorptive properties of SiO2. The synthesized NPs were characterized using FT-IR spectroscopy, HR-TEM, FE–SEM, and EDS. Zeta potential, specific surface area, and porosity were also determined. The results show that the synthesized SiO2@TiO2 NPs that are hydrothermally treated have similar behaviors and properties regardless of the hydrothermal treatment type and synthesis scale and better performance compared to the SiO2@TiO2 calcined and TiO2 reference samples. The generation of reactive species was determined by EPR, and the photocatalytic activity was evaluated by the methylene blue (MB) removal in aqueous solution under UV light. Hydrothermally treated SiO2@TiO2 showed the highest adsorption capacity and photocatalytic removal of almost 100% of MB after 15 min in UV light, 55 and 89% higher compared to SiO2 and TiO2 reference samples, respectively, while the SiO2@TiO2 calcined sample showed 80%. It was also observed that the SiO2-containing samples showed a considerable adsorption capacity compared to the TiO2 reference sample, which improved the MB removal. These results demonstrate the efficient synergy effect between SiO2 and TiO2, which enhances both the adsorption and photocatalytic properties of the nanomaterial. A possible photocatalytic mechanism was also proposed. Also noteworthy is that the performance of the upscaled HT1 sample was similar to one of the lab-scale synthesized samples, demonstrating the potentiality of this synthesis methodology in producing candidate nanomaterials for the removal of contaminants from wastewater. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation)
Show Figures

Figure 1

Article
Synthesis of Composites for the Removal of F- Anions
Nanomaterials 2023, 13(16), 2277; https://doi.org/10.3390/nano13162277 - 08 Aug 2023
Viewed by 180
Abstract
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer’s method. Fourier transform infrared spectrometry, [...] Read more.
This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer’s method. Fourier transform infrared spectrometry, X-ray, Raman spectroscopy, thermogravimetric analysis, surface charge distribution, specific surface area and porosity, adsorption isotherms, and the van’t Hoff equation are used for the characterization of the synthesized materials. Results show that the addition of amines with ferrihydrite generates wrinkles on the surface layers, suggesting a successful incorporation of nitrogen onto the graphene oxide; and as a consequence, the adsorption capacity per unit area of the materials is increased. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (Volume II))
Show Figures

Figure 1

Communication
A Novel Atomic-Level Post-Etch-Surface-Reinforcement Process for High-Performance p-GaN Gate HEMTs Fabrication
Nanomaterials 2023, 13(16), 2275; https://doi.org/10.3390/nano13162275 - 08 Aug 2023
Viewed by 131
Abstract
A novel atomic-level post-etch-surface-reinforcement (PESR) process is developed to recover the p-GaN etching induced damage region for high performance p-GaN gate HEMTs fabrication. This process is composed of a self-limited surface modification step with O2 plasma, following by an oxide [...] Read more.
A novel atomic-level post-etch-surface-reinforcement (PESR) process is developed to recover the p-GaN etching induced damage region for high performance p-GaN gate HEMTs fabrication. This process is composed of a self-limited surface modification step with O2 plasma, following by an oxide removal step with BCl3 plasma. With PESR process, the AlGaN surface morphology after p-GaN etching was comparable to the as-epitaxial level by AFM characterization, and the AlGaN lattice crystallization was also recovered which was measured in a confocal Raman system. The electrical measurement further confirmed the significant improvement of AlGaN surface quality, with one-order of magnitude lower surface leakage in a metal-semiconductor (MS) Schottky-diode and 6 times lower interface density of states (Dit) in a MIS C-V characterization. The XPS analysis of Al2O3/AlGaN showed that the p-GaN etching induced F-byproduct and Ga-oxide was well removed and suppressed by PESR process. Finally, the developed PESR process was successfully integrated in p-GaN gate HEMTs fabrication, and the device performance was significantly enhanced with ~20% lower of on-resistance and ~25% less of current collapse at Vds,Q bias of 40 V, showing great potential of leverage p-GaN gate HEMTs reliability. Full article
Show Figures

Figure 1

Review
Design of Bifunctional Nanocatalysts Based on Zeolites for Biomass Processing
Nanomaterials 2023, 13(16), 2274; https://doi.org/10.3390/nano13162274 - 08 Aug 2023
Viewed by 322
Abstract
Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we [...] Read more.
Bifunctional catalysts consisting of metal-containing nanoparticles (NPs) and zeolite supports have received considerable attention due to their excellent catalytic properties in numerous reactions, including direct (biomass is a substrate) and indirect (platform chemical is a substrate) biomass processing. In this short review, we discuss major approaches to the preparation of NPs in zeolites, concentrating on methods that allow for the best interplay (synergy) between metal and acid sites, which is normally achieved for small NPs well-distributed through zeolite. We focus on the modification of zeolites to provide structural integrity and controlled acidity, which can be accomplished by the incorporation of certain metal ions or elements. The other modification avenue is the adjustment of zeolite morphology, including the creation of numerous defects for the NP entrapment and designed hierarchical porosity for improved mass transfer. In this review, we also provide examples of synergy between metal and acid sites and emphasize that without density functional theory calculations, many assumptions about the interactions between active sites remain unvalidated. Finally, we describe the most interesting examples of direct and indirect biomass (waste) processing for the last five years. Full article
(This article belongs to the Special Issue Applications of Nanocatalysts in Biomass Conversion: Volume II)
Show Figures

Graphical abstract

Article
Theoretical Study of the Defects and Doping in Tuning the Electrocatalytic Activity of Graphene for CO2 Reduction
Nanomaterials 2023, 13(15), 2273; https://doi.org/10.3390/nano13152273 - 07 Aug 2023
Viewed by 215
Abstract
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural [...] Read more.
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural tunability, and environmental friendliness, have rendered them promising materials in this area. By doping heteroatoms or artificially inducing defects in graphene, its catalytic performance can be effectively improved. In this work, the mechanisms underlying the CO2 reduction reaction on 10 graphene-based catalysts were systematically studied. N/B/O-codoped graphene with a single-atom vacancy defect showed the best performance and substantial improvement in catalytic activity compared with pristine graphene. The specific roles of the doped elements, including B, N, and O, as well as the defects, are discussed in detail. By analysing the geometric and electronic structures of the catalysts, we showed how the doped heteroatoms and defects influence the catalytic reaction process and synergistically promoted the catalytic efficiency of graphene. Full article
Show Figures

Figure 1

Article
Enhanced Lithium Storage Performance of α-MoO3/CNTs Composite Cathode
Nanomaterials 2023, 13(15), 2272; https://doi.org/10.3390/nano13152272 - 07 Aug 2023
Viewed by 135
Abstract
Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive material, has attracted widespread attention due to its high theoretical lithium storage specific capacity (279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction kinetics, and large volume change during Li+ [...] Read more.
Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive material, has attracted widespread attention due to its high theoretical lithium storage specific capacity (279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction kinetics, and large volume change during Li+ ions intercalation and deintercalation seriously limit the practical application of α-MoO3. Herein, we added a small number of CNTs (1.76%) to solve these problems in a one-step hydrothermal process for preparing the α-MoO3/CNTs composite. Because of the influence of CNTs, the α-MoO3 nanobelt in the α-MoO3/CNTs composite had a larger interlayer spacing, which provided more active sites and faster reaction kinetics for lithium storage. In addition, CNTs formed a three-dimensional conductive network between α-MoO3 nanobelts, enhanced the electrical conductivity of the composite, accelerated the electron conduction, shortened the ion transport path, and alleviated the structural fragmentation caused by the volume expansion during the α-MoO3 intercalation and deintercalation of Li+ ions. Therefore, the α-MoO3/CNTs composite cathode had a significantly higher rate performance and cycle life. After 150 cycles, the pure α-MoO3 cathode had almost no energy storage, but α-MoO3/CNTs composite cathode still retained 93 mAh/g specific capacity. Full article
(This article belongs to the Special Issue Nanostructures for Wastewater Treatment and Energy Conversion)
Show Figures

Figure 1

Review
Recent Progress of Photothermal Therapy Based on Conjugated Nanomaterials in Combating Microbial Infections
Nanomaterials 2023, 13(15), 2269; https://doi.org/10.3390/nano13152269 - 07 Aug 2023
Viewed by 249
Abstract
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to [...] Read more.
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to the choice of photothermal agent. Conjugated nanomaterials are potential candidates for photothermal agents because of their easy modification, excellent photothermal conversion efficiency, good photostability, and biodegradability. In this paper, the application of photothermal agents based on conjugated nanomaterials in photothermal antimicrobial treatment is reviewed, including conjugated small molecules, conjugated oligomers, conjugated polymers, and pseudo-conjugated polymers. At the same time, the application of conjugated nanomaterials in the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) is briefly introduced. Finally, the research status, limitations, and prospects of photothermal therapy using conjugated nanomaterials as photothermal agents are discussed. Full article
(This article belongs to the Special Issue Applications of Smart Nanomaterials)
Show Figures

Figure 1

Article
Methane Catalytic Combustion under Lean Conditions over Pristine and Ir-Loaded La1−xSrxMnO3 Perovskites: Efficiency, Hysteresis, and Time-on-Stream and Thermal Aging Stabilities
Nanomaterials 2023, 13(15), 2271; https://doi.org/10.3390/nano13152271 - 07 Aug 2023
Viewed by 148
Abstract
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of [...] Read more.
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of unconverted methane escaping into the atmosphere. CH4 emissions are a major contributor to the ‘greenhouse effect’, and therefore, they need to be effectively reduced. Catalytic CH4 oxidation is a promising method that can be used for this purpose. Detailed studies of the activity, oxidative thermal aging, and the time-on-stream (TOS) stability of pristine La1−xSrxMnO3 perovskites (LSXM; X = % substitution of La with Sr = 0, 30, 50 and 70%) and iridium-loaded Ir/La1−xSrxMnO3 (Ir/LSXM) perovskite catalysts were conducted in a temperature range of 400–970 °C to achieve complete methane oxidation under excess oxygen (lean) conditions. The effect of X on the properties of the perovskites, and thus, their catalytic performance during heating/cooling cycles, was studied using samples that were subjected to various pretreatment conditions in order to gain an in-depth understanding of the structure–activity/stability correlations. Large (up to ca. 300 °C in terms of T50) inverted volcano-type differences in catalytic activity were found as a function of X, with the most active catalysts being those where X = 0%, and the least active were those where X = 50%. Inverse hysteresis phenomena (steady-state rate multiplicities) were revealed in heating/cooling cycles under reaction conditions, the occurrence of which was found to depend strongly on the employed catalyst pre-treatment (pre-reduction or pre-oxidation), while their shape and the loop amplitude were found to depend on X and the presence of Ir. All findings were consistently interpreted, which involved a two-term mechanistic model that utilized the synergy of Eley–Rideal and Mars–van Krevelen kinetics. Full article
Show Figures

Graphical abstract

Communication
Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire
Nanomaterials 2023, 13(15), 2270; https://doi.org/10.3390/nano13152270 - 07 Aug 2023
Viewed by 140
Abstract
A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) [...] Read more.
A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) and the convex (endo-positioned) surface of WGNR with different curvatures via Van der Waals interaction. The density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods were adopted to calculate the transport properties of these devices at various bias voltages (VS) and gate voltages (VG), such as the conductance, spin-polarized currents, transmission spectra (TS), local density of states (LDOS), and scattering states. The results indicate that the position of V7(Bz)8 and the bending curvature of WGNR play important roles in tuning the transport properties of these four-terminal devices. A spin-polarized transport property is induced for these four-terminal devices by the spin-polarized nature of V7(Bz)8. Particularly, the down-spin channel disturbs strongly on the source-to-drain conductance of WGNR when V7(Bz)8 is endo-positioned crossing the WGNR. Our findings on the novel property of four-terminal V7(Bz)8-WGNR devices provide useful guidelines for achieving flexible graphene-based electronic nanodevices by attaching other similar multidecker metal-arene nanowires. Full article
(This article belongs to the Special Issue Current Advances in Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Communication
Controlled Fabrication of Hierarchically Structured MnO2@NiCo-LDH Nanoarrays for Efficient Electrocatalytic Urea Oxidization
Nanomaterials 2023, 13(15), 2268; https://doi.org/10.3390/nano13152268 - 07 Aug 2023
Viewed by 177
Abstract
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled [...] Read more.
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled fabrication of hierarchically structured nanomaterials as potential catalysts for UOR. The prepared MnO2@NiCo-LDH hybrid catalyst demonstrates remarkable improvements in reaction kinetics, benefiting from synergistic enhancements in charge transfer and efficient mass transport facilitated by its unique hierarchical architecture. Notably, the catalyst exhibits an exceptionally low onset potential of 1.228 V and requires only 1.326 V to achieve an impressive current density of 100 mA cm−2, representing a state-of-the-art performance in UORs. These findings highlight the tremendous potential of this innovative material designing strategy to drive advancements in electrocatalytic processes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop