Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Journal = Instruments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Additive Manufacturing of an IH-Type Linac Structure from Stainless Steel and Pure Copper
Instruments 2023, 7(3), 22; https://doi.org/10.3390/instruments7030022 - 07 Aug 2023
Viewed by 249
Abstract
Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one [...] Read more.
Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one way towards future cost-effective green accelerator facilities. As a proof of concept, we present a high-efficiency Zeff=280 MΩ/m, 433.632 MHz IH-DTL cavity based on an AM design. In this case, the complex internal drift tube structures with internal cooling channels have been produced from 1.4404 stainless steel and from pure copper using AM. The prototype cavity, as well as stainless steel AM parts have been electroplated with copper. We present results from successful vacuum tests, low level RF measurements of the cavity, as well as the status of preparations for high-power RF tests with a 30 kW pulsed power amplifier. Full article
Show Figures

Figure 1

Article
Analysis of Vector-Network-Analyzer-Based Power Sensor Calibration Method Application
Instruments 2023, 7(3), 21; https://doi.org/10.3390/instruments7030021 - 19 Jul 2023
Viewed by 226
Abstract
Radio Frequency (RF) power sensor calibration is one of the essential measurements in RF and microwave metrology. For a reliable and accurate power sensor calibration, there are various methods, such as the substitution method, the direct comparison transfer method (DCTM), and the vector [...] Read more.
Radio Frequency (RF) power sensor calibration is one of the essential measurements in RF and microwave metrology. For a reliable and accurate power sensor calibration, there are various methods, such as the substitution method, the direct comparison transfer method (DCTM), and the vector network analyzer (VNA)-based calibration method (VBCM). The VBCM is a method that is derived from the DCTM. It is a preferred method since the VNA has a better measurement capability and has fewer connection requirements for measurement devices. In this study, the milestones and potential application errors of the VBCM are given by considering the connection mistakes, measurement faults, calculation errors, and control software coding problems. At the end of the power sensor calibration measurements with the VBCM, the model function components and the uncertainty calculation examples according to the GUM Bayesian method are also presented in this study. In addition, the advantages and disadvantages of the VBCM compared to the former methods are discussed in this study. Full article
Show Figures

Figure 1

Article
Inkjet-Printed Interdigitated Capacitors for Sensing Applications: Temperature-Dependent Electrical Characterization at Cryogenic Temperatures down to 20 K
Instruments 2023, 7(3), 20; https://doi.org/10.3390/instruments7030020 - 19 Jul 2023
Viewed by 238
Abstract
Microwave transducers are widely used for sensing applications in areas such as gas sensing and microfluidics. Inkjet printing technology has been proposed as a promising method for fabricating such devices due to its capability to produce complex patterns and geometries with high precision. [...] Read more.
Microwave transducers are widely used for sensing applications in areas such as gas sensing and microfluidics. Inkjet printing technology has been proposed as a promising method for fabricating such devices due to its capability to produce complex patterns and geometries with high precision. In this work, the temperature-dependent electrical properties of an inkjet-printed single-port interdigitated capacitor (IDC) were investigated at cryogenic temperatures down to 20 K. The IDC was designed and fabricated using inkjet printing technology, while its reflection coefficient was measured using a vector network analyzer in a cryogenic measurement setup and then transformed into the corresponding admittance. The resonant frequency and quality factor (Q-factor) of the IDC were extracted as functions of the temperature and their sensitivity was evaluated. The results showed that the resonant frequency shifted to higher frequencies as the temperature was reduced, while the Q-factor increased as the temperature decreased. The trends and observations in the temperature-dependent electrical properties of the IDC are discussed and analyzed in this paper, and are expected to be useful in future advancement of the design and optimization of inkjet-printed microwave transducers for sensing applications and cryogenic electronics. Full article
Show Figures

Figure 1

Correction
Correction: Treffert et al. Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies. Instruments 2021, 5, 38
Instruments 2023, 7(3), 19; https://doi.org/10.3390/instruments7030019 - 07 Jul 2023
Viewed by 131
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

Article
Investigating Slit-Collimator-Produced Carbon Ion Minibeams with High-Resolution CMOS Sensors
Instruments 2023, 7(2), 18; https://doi.org/10.3390/instruments7020018 - 06 Jun 2023
Viewed by 621
Abstract
Particle minibeam therapy has demonstrated the potential for better healthy tissue sparing due to spatial fractionation of the delivered dose. Especially for heavy ions, the spatial fractionation could enhance the already favorable differential biological effectiveness at the target and the entrance region. Moreover, [...] Read more.
Particle minibeam therapy has demonstrated the potential for better healthy tissue sparing due to spatial fractionation of the delivered dose. Especially for heavy ions, the spatial fractionation could enhance the already favorable differential biological effectiveness at the target and the entrance region. Moreover, spatial fractionation could even be a viable option for bringing ions heavier than carbon back into patient application. To understand the effect of minibeam therapy, however, requires careful conduction of pre-clinical experiments, for which precise knowledge of the minibeam characteristics is crucial. This work introduces the use of high-spatial-resolution CMOS sensors to characterize collimator-produced carbon ion minibeams in terms of lateral fluence distribution, secondary fragments, track-averaged linear energy transfer distribution, and collimator alignment. Additional simulations were performed to further analyze the parameter space of the carbon ion minibeams in terms of beam characteristics, collimator positioning, and collimator manufacturing accuracy. Finally, a new concept for reducing the neutron dose to the patient by means of an additional neutron shield added to the collimator setup is proposed and validated in simulation. The carbon ion minibeam collimator characterized in this work is used in ongoing pre-clinical experiments on heavy ion minibeam therapy at the GSI. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics)
Show Figures

Figure 1

Article
Geant4 Simulation of Muon Absorption in Concrete Layers
Instruments 2023, 7(2), 17; https://doi.org/10.3390/instruments7020017 - 31 May 2023
Viewed by 842
Abstract
Muography requires a detailed understanding of the absorption of muons in the material situated between the muon source and the detector. A large-statistics (>3 billion event) Geant4 simulation was run to simulate the absorption of muons in different thicknesses of concrete layers and [...] Read more.
Muography requires a detailed understanding of the absorption of muons in the material situated between the muon source and the detector. A large-statistics (>3 billion event) Geant4 simulation was run to simulate the absorption of muons in different thicknesses of concrete layers and to determine the effect of the material on the energies of muons that were not absorbed. The Geant4 simulation included a simple detector placed directly behind the absorbing material. A Geant4 simulation was also run for the same detector for alpha sources with no absorbing material and the results of this simulation were compared to the signals from the physical detector built in the laboratory and measured using standard alpha sources. The large-statistics simulations using muons of different energies were compared to the predictions of muon absorption from existing literature. The results of the simulations were in good agreement with both the measured signals from the laboratory as well as the predictions from the literature and the general method is found to be well-suited for studies used for muography involving material layers of uniform thickness. Full article
(This article belongs to the Special Issue Muography, Applications in Cosmic-Ray Muon Imaging)
Show Figures

Figure 1

Article
Quenching Circuit Discriminator Architecture Impact on a Sub-10 ps FWHM Single-Photon Timing Resolution SPAD
Instruments 2023, 7(2), 16; https://doi.org/10.3390/instruments7020016 - 09 Apr 2023
Viewed by 956
Abstract
In the field of radiation instrumentation, there is a desire to reach a sub-10 ps FWHM timing resolution for applications such as time-of-flight positron emission tomography, time-of-flight positron computed tomography and time-resolved calorimetry. One of the key parts of the detection chain for [...] Read more.
In the field of radiation instrumentation, there is a desire to reach a sub-10 ps FWHM timing resolution for applications such as time-of-flight positron emission tomography, time-of-flight positron computed tomography and time-resolved calorimetry. One of the key parts of the detection chain for these applications is a single-photon detector and, in recent years, the first single-photon avalanche diode (SPAD) with a sub-10 ps timing resolution was presented. To reach such a timing resolution, the SPAD was read out by an operational amplifier operated in open-loop as a comparator. This paper presents a comparison between comparators and inverters to determine which type of leading-edge discriminator can obtain the best single-photon timing resolution. Six different quenching circuits (QCs) implemented in TSMC 65 nm are tested with SPADs of the same architecture and in the same operation conditions. This allows us to compare experimental results between the different QCs. This paper also presents a method to measure the SPAD signal slope, the SPAD excess voltage variation and simulations to determine the added jitter of different leading-edge discriminators. For some discriminator architectures, a cascode transistor was required to increase the maximum excess voltage of the QC. This paper also presents the impact on the single-photon timing resolution of adding a cascode transistor for a comparator or an inverter-based discriminator. This paper reports a 6.3 ps FWHM SPTR for a SPAD read out by a low-threshold comparator and a 6.8 ps FWHM SPTR for an optimized 1 V inverter using a cascode transistor for a higher excess voltage. Full article
(This article belongs to the Special Issue Feature Papers in Instruments 2021–2022)
Show Figures

Figure 1

Article
Design and Manufacture of a Test Device for Radiosynthesizer Vacuum Pumps
Instruments 2023, 7(2), 15; https://doi.org/10.3390/instruments7020015 - 06 Apr 2023
Viewed by 1024
Abstract
Vacuum pump wear is the most prevalent failure mode of the IBA Synthera® automated radiochemistry system. Rebuilding or replacing the pump causes equipment downtime and increases the radiation exposure of the service personnel. We built a dedicated test device to assess new [...] Read more.
Vacuum pump wear is the most prevalent failure mode of the IBA Synthera® automated radiochemistry system. Rebuilding or replacing the pump causes equipment downtime and increases the radiation exposure of the service personnel. We built a dedicated test device to assess new or rebuilt pumps prior to installation, thus reducing downtime and radiation exposure during repairs. The Testbed incorporates a microprocessor that actuates the pump, valves, and pressure sensor; communicates with the user through lights, buttons, and an alphanumeric screen; and outputs test results to a laptop. The Testbed increases productivity and safety in the radiochemistry laboratory. Full article
Show Figures

Figure 1

Project Report
Fast Timing Detectors and Applications in Cosmic Ray Physics and Medical Science
Instruments 2023, 7(2), 14; https://doi.org/10.3390/instruments7020014 - 23 Mar 2023
Viewed by 625
Abstract
We use fast silicon detectors and the fast sampling method originally developed for high energy physics for two applications: cosmic ray measurements in collaboration with NASA and dose measurements during flash beam cancer treatment. The cosmic ray measurement will benefit from the fast [...] Read more.
We use fast silicon detectors and the fast sampling method originally developed for high energy physics for two applications: cosmic ray measurements in collaboration with NASA and dose measurements during flash beam cancer treatment. The cosmic ray measurement will benefit from the fast sampling method to measure the Bragg peak where the particle stops in the silicon detector and the dose measurement is performed by counting the number of particles that enter the detector. Full article
(This article belongs to the Special Issue Timing Detectors)
Show Figures

Figure 1

Review
Cosmic-Ray Tomography for Border Security
Instruments 2023, 7(1), 13; https://doi.org/10.3390/instruments7010013 - 20 Mar 2023
Cited by 1 | Viewed by 2660
Abstract
A key task for customs workers is the interception of hazardous, illegal and counterfeit items in order to protect the health and safety of citizens. However, it is estimated that only a small fraction of cargo is inspected and an even smaller fraction [...] Read more.
A key task for customs workers is the interception of hazardous, illegal and counterfeit items in order to protect the health and safety of citizens. However, it is estimated that only a small fraction of cargo is inspected and an even smaller fraction of trafficked goods are detected. Today, the most widely used technology for scanning vehicles, ranging from vans and trucks to railcars, is γ ray and X-ray radiography. New technologies are required to overcome current technological shortcomings, such as the inability to detect the target material composition, the usage of harmful ionising radiation sources and the resultant low throughput. Cosmic ray tomography (CRT) is a promising technology for cargo screening. Cosmic ray muons have average energies of around 10,000 times larger than a typical X-ray and therefore can penetrate relatively large and dense materials. By analysing muon scattering, it is possible to identify materials hidden inside shielding that is too thick or deep for other imaging methods. CRT is also completely passive, exploiting naturally occurring secondary cosmic radiation, and is therefore safe for humans and animals. Contrary to conventional X-ray- or γ-ray-based imaging techniques, CRT also allows material differentiation and anomaly localisation within the cargo or vehicle through the provision of 3D images. This article reviews the current state-of-the-art technology in CRT, critically assessing the strengths and weaknesses of the method, and suggesting further directions for development. Full article
(This article belongs to the Special Issue Muography, Applications in Cosmic-Ray Muon Imaging)
Show Figures

Figure 1

Article
Upgrade of Thomson Scattering Diagnostic on HL-2A
Instruments 2023, 7(1), 12; https://doi.org/10.3390/instruments7010012 - 06 Mar 2023
Viewed by 984
Abstract
The Thomson scattering diagnostic of the HL-2A tokamak device was upgraded to improve its multi-point diagnostic capability, including new collection optics, fibers bundles, and data analysis code. The small old collection lens was replaced by a six-piece lens with a Cooke optical design. [...] Read more.
The Thomson scattering diagnostic of the HL-2A tokamak device was upgraded to improve its multi-point diagnostic capability, including new collection optics, fibers bundles, and data analysis code. The small old collection lens was replaced by a six-piece lens with a Cooke optical design. The aperture of its first standard sphere face is 310.125 mm, which successfully increases the amount of collected scattering light by about three times. The new collection optic module allows for up to twenty-six spatial points. A kind of Y-type fiber bundle has also been used to ensure that the fiber end-face matches the image of the laser beam exactly. Additionally, the new data analysis code can provide preview results in seconds. Finally, the multi-point Te diagnostic ability has been significantly improved. Full article
(This article belongs to the Special Issue Feature Papers in Instruments 2021–2022)
Show Figures

Figure 1

Article
Commissioning Results of the New Compact ECR Ion Source for Electrostatic Storage Ring at KACST
Instruments 2023, 7(1), 11; https://doi.org/10.3390/instruments7010011 - 23 Feb 2023
Viewed by 980
Abstract
A compact microwave ECR ion source with low operating power was tested and commissioned for the ion injector line in the multipurpose low-energy ELASR storage ring facility at King Abdulaziz City for Science and Technology (KACST) in Riyadh. The compact ECR ion source [...] Read more.
A compact microwave ECR ion source with low operating power was tested and commissioned for the ion injector line in the multipurpose low-energy ELASR storage ring facility at King Abdulaziz City for Science and Technology (KACST) in Riyadh. The compact ECR ion source can deliver singly charged ions with an energy of up to 50 keV and a beam current of up to 50 μA or up to 500 µA with a larger extraction aperture. The plasma in the ECR chamber is driven by a simple transmitter antenna, making the overall size of the ion source only 6 cm in diameter, which is relatively small when compared with other ECR systems. Additionally, the source operates without a high-voltage platform, which significantly reduces the overall footprint and simplifies the system operation. In this paper, the mechanical design and modeling of the ECR ion source are introduced, and the layout of the first part of the beam line is presented along with the numerical simulation results. In addition, the experimental results obtained for the first generated ion beam and commissioning of the ECR ion source are introduced and discussed. Full article
Show Figures

Figure 1

Article
RF Design and Measurements of a C-Band Prototype Structure for an Ultra-High Dose-Rate Medical Linac
Instruments 2023, 7(1), 10; https://doi.org/10.3390/instruments7010010 - 22 Feb 2023
Viewed by 809
Abstract
In this paper, we illustrate the RF design and measurements of a C-band prototype structure for an Ultra High Dose Rate medical linac. (1) Background: FLASH Radiotherapy (RT) is a revolutionary new technique for cancer cure. It releases ultra-high radiation dose rates (above [...] Read more.
In this paper, we illustrate the RF design and measurements of a C-band prototype structure for an Ultra High Dose Rate medical linac. (1) Background: FLASH Radiotherapy (RT) is a revolutionary new technique for cancer cure. It releases ultra-high radiation dose rates (above 100 Gy/s) in microsecond short pulses. In order to obtain a high dose in a very short time, accelerators with high-intensity currents (the order of 100 mA peak currents) have to be developed. In this contest, Sapienza University, in collaboration with SIT-Sordina IORT Technology spa, is developing a new C-band linac to achieve the FLASH regime. (2) Methods: We performed the RF electromagnetic design of the prototype of the C band linac using CST STUDIO Suite Code and the RF low power RF test at Sapienza University of Rome. The measurements of the field in the cavity have been done with the bead-pull technique. (3) Results: This device is a nine-cell structure operating on the π/2 mode at 5.712 GHz (C-band). We report and discuss the test measurement results on a full-scale copper prototype, showing good agreement with CST RF simulations. A tuning procedure has been implemented in order to ensure proper operating frequency and to reach a field profile flatness of the order of a few percent. (4) Conclusions: The prototype of a C-band linac for FLASH applications was successfully tested with low RF power at Sapienza University. The fabrication and ad hoc tuning procedures have been optimized and discussed in the paper. Full article
Show Figures

Figure 1

Article
A Beam Monitor for Ion Beam Therapy Based on HV-CMOS Pixel Detectors
Instruments 2023, 7(1), 9; https://doi.org/10.3390/instruments7010009 - 09 Feb 2023
Viewed by 1276
Abstract
Particle therapy is a well established clinical treatment of tumors. More than one hundred particle therapy centers are in operation world-wide. The advantage of using hadrons like protons or carbon ions as particles for tumor irradiation is the distinct peak in the depth-dependent [...] Read more.
Particle therapy is a well established clinical treatment of tumors. More than one hundred particle therapy centers are in operation world-wide. The advantage of using hadrons like protons or carbon ions as particles for tumor irradiation is the distinct peak in the depth-dependent energy deposition, which can be exploited to accurately deposit doses in the tumor cells. To guarantee this, high accuracy in monitoring and control of the particle beam is of the utmost importance. Before the particle beam enters the patient, it traverses a monitoring system which has to give fast feedback to the beam control system on position and dose rate of the beam while minimally interacting with the beam. The multi-wire chambers mostly used as beam position monitors have their limitations when a fast response time is required (drift time). Future developments such as MRI-guided ion beam therapy pose additional challenges for the beam monitoring system, such as tolerance of magnetic fields and acoustic noise (vibrations). Solid-state detectors promise to overcome these limitations and the higher resolution they offer can create additional benefits. This article presents the evaluation of an HV-CMOS detector for beam monitoring, provides results from feasibility studies in a therapeutic beam, and summarizes the concepts towards the final large-scale assembly and readout system. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics)
Show Figures

Figure 1

Article
A Non-Inductive Magnetic Eye-Tracker: From Dipole Tracking to Gaze Retrieval
Instruments 2023, 7(1), 8; https://doi.org/10.3390/instruments7010008 - 07 Feb 2023
Viewed by 967
Abstract
We analyze the information that can be retrieved from the tracking parameters produced by an innovative wearable eye tracker. The latter is based on a permanent-magnet marked corneal lens and by an array of magnetoresistive detectors that measure the magnetostatic field in several [...] Read more.
We analyze the information that can be retrieved from the tracking parameters produced by an innovative wearable eye tracker. The latter is based on a permanent-magnet marked corneal lens and by an array of magnetoresistive detectors that measure the magnetostatic field in several positions in the eye proximity. We demonstrate that, despite missing information due to the axial symmetry of the measured field, physiological constraints or measurement conditions make possible to infer complete eye-pose data. Angular precision and accuracy achieved with the current prototypical device are also assessed and briefly discussed. The results show that the instrumentation considered is suitable as a new, moderately invasive medical diagnostics for the characterization of ocular movements and associated disorders. Full article
Show Figures

Figure 1

Back to TopTop