Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (495)

Search Parameters:
Journal = ChemEngineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Low-Waste Synthesis and Properties of Highly Dispersed NiO·Al2O3 Mixed Oxides Based on the Products of Centrifugal Thermal Activation of Gibbsite
ChemEngineering 2023, 7(4), 71; https://doi.org/10.3390/chemengineering7040071 - 29 Jul 2023
Viewed by 316
Abstract
This study revealed an increased reactivity of centrifugally thermoactivated products of gibbsite toward aqueous solutions of nickel nitrate at room temperature as well as under hydrothermal conditions. X-ray, thermal, microscopy, adsorption and chemical analysis methods were used to investigate and demonstrate the possibility [...] Read more.
This study revealed an increased reactivity of centrifugally thermoactivated products of gibbsite toward aqueous solutions of nickel nitrate at room temperature as well as under hydrothermal conditions. X-ray, thermal, microscopy, adsorption and chemical analysis methods were used to investigate and demonstrate the possibility of obtaining highly loaded mixed aluminum–nickel oxide systems, with a nickel content of ca. 33 wt.%, using a hydrochemical treatment at room temperature or a hydrothermal treatment of suspensions of the product of the centrifugal thermal activation of gibbsite in aqueous solutions of nickel nitrate. It was shown that the thermal treatment of xerogels—hydrochemical interaction products—in the range of 350–850 °C led to the formation of NiO phases and highly dispersed solid solutions of nickel based on the NiAl2O4 spinel structure, with different ratios and a high specific surface area of 140–200 m2/g. A hydrochemical treatment of suspensions at room temperature ensures that the predominant formation of the NiO phase is distributed over the surface of the alumina matrix after calcination, whereas hydrothermal treatment at 150 °C leads to a deeper interaction of the suspension components at the treatment step, which occurs after the thermal treatment of the formed xerogel in the predominant formation of poorly crystallized NiAl2O4 spinel (“protospinel”). The considered method makes it possible to obtain complex aluminum–nickel oxide systems with different phase ratios, decreases the number of initial reagents and synthesis steps, completely excludes waste and diminishes the total amount of nitrates by 75 wt.% compared to the classical nitrate scheme for the coprecipitation of compounds with a similar elemental composition. Full article
Show Figures

Figure 1

Article
Recent Progress in the Viscosity Modeling of Concentrated Suspensions of Unimodal Hard Spheres
ChemEngineering 2023, 7(4), 70; https://doi.org/10.3390/chemengineering7040070 - 27 Jul 2023
Viewed by 258
Abstract
The viscosity models for concentrated suspensions of unimodal hard spheres published in the twenty-first century are reviewed, compared, and evaluated using a large pool of available experimental data. The Pal viscosity model for unimodal suspensions is the best available model in that the [...] Read more.
The viscosity models for concentrated suspensions of unimodal hard spheres published in the twenty-first century are reviewed, compared, and evaluated using a large pool of available experimental data. The Pal viscosity model for unimodal suspensions is the best available model in that the predictions of this model agree very well with the low (zero)-shear experimental relative viscosity data for coarse suspensions, nanosuspensions, and coarse suspensions thickened by starch nanoparticles. The average percentage error in model predictions is less than 6.5%. Finally, the viscous behavior of concentrated multimodal suspensions is simulated using the Pal model for unimodal suspensions. Full article
Show Figures

Figure 1

Article
Hydraulic Cold-Pressed Extraction of Sacha Inchi Seeds: Oil Yield and Its Physicochemical Properties
ChemEngineering 2023, 7(4), 69; https://doi.org/10.3390/chemengineering7040069 - 27 Jul 2023
Viewed by 505
Abstract
Sacha inchi oil (SIO) extraction has been extensively studied using various oil extraction techniques to achieve a high oil recovery. However, most studies relied on heat-based methods, which led to compromised oil quality and reduced nutritional values, particularly polyunsaturated fatty acids (omega-3 and [...] Read more.
Sacha inchi oil (SIO) extraction has been extensively studied using various oil extraction techniques to achieve a high oil recovery. However, most studies relied on heat-based methods, which led to compromised oil quality and reduced nutritional values, particularly polyunsaturated fatty acids (omega-3 and omega-6), vitamin E, and phenolic compounds. To address these concerns, this study employed a hydraulic cold-pressed extraction (HCPE) technique for extracting SIO aiming to enhance oil yield while preserving its nutritional integrity. During the HCPE process of sacha inchi seeds (SIS), conducted at a constant temperature of 25 ± 1 °C, pressures and pressing times were varied within the range of 30–50 MPa and 10–30 min, respectively, to determine their impact on SIO yields. The results revealed that both pressure and pressing time significantly influenced the yields of SIO (p < 0.05), with the highest oil recovery of 86.31 wt.% on a wet basis achieved at 50 MPa for 30 min. Regarding physicochemical properties, the peroxide values (5.71–9.07 meq/kg), iodine values (176.22–197.76 g I2/100 g), acid values (1.82–2.16 mg KOH/g), and percentage of free fatty acids (0.91–1.08 wt.% as oleic acid) were found to be influenced by pressure and pressing time (p < 0.05). Additionally, the color variation by L* (34.22–35.17), −a* (0.39–0.81), and b* (3.48–5.62) changed with each oil yield. Notably, the high iodine value in SIO indicated a substantial content of polyunsaturated fatty acids, including omega-3 (40.86%), omega-6 (40.87%), and omega-9 (10.20%). Furthermore, a comparison with solvent extraction methods demonstrated that HCPE exhibited similar efficiency in extracting SIO, offering additional advantage in terms of its cold-pressed condition, eliminating of solvent use, simplicity, short extraction time, and higher oil recovery. Full article
Show Figures

Figure 1

Article
Experimental Investigation of Heat Losses in a Pilot-Scale Multiple Dividing Wall Distillation Column with Three Parallel Sections
ChemEngineering 2023, 7(4), 68; https://doi.org/10.3390/chemengineering7040068 - 26 Jul 2023
Viewed by 192
Abstract
For an in-depth investigation of the separation process in small-scale distillation columns, knowledge about the exact vapor load inside the column is highly important. However, since columns with small diameters have a comparatively high surface-to-volume ratio, heat losses have a significant impact on [...] Read more.
For an in-depth investigation of the separation process in small-scale distillation columns, knowledge about the exact vapor load inside the column is highly important. However, since columns with small diameters have a comparatively high surface-to-volume ratio, heat losses have a significant impact on fluid dynamics, as they lead to unwanted condensation, and thus, to changes in the internal flows. This work presents a procedure used to measure heat losses in a 9.6 m high distillation column with three partially parallel segments (multiple dividing wall column). The evaporator is made of stainless steel, and the column walls are made of double-walled, evacuated, mirrored glass, and additionally, these can be heated. It is found that significant amounts of heat are lost in the evaporator. Throughout the column height, around 0.8 kW are additionally lost, even with external wall heating. To determine the main reason for this significant loss, thermal images are taken, indicating that the problem mainly arises because of the flanges. Based on this, it can be concluded that proper insulation and additional heating jackets for the column walls are highly recommended for small-scale distillation columns in order to increase their thermal efficiency. Full article
(This article belongs to the Special Issue Process Intensification for Chemical Engineering and Processing)
Show Figures

Figure 1

Article
Influence of the Absolute Pressure of the Extraction System on the Yield and Composition of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson Leaf Essential Oil Extracted by Steam Distillation
ChemEngineering 2023, 7(4), 67; https://doi.org/10.3390/chemengineering7040067 - 24 Jul 2023
Viewed by 285
Abstract
This study aimed to evaluate the extraction of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson essential oil by steam distillation under reduced pressure. Yield and composition of the essential oils obtained at different system pressures were analyzed. System pressure had a significant influence on [...] Read more.
This study aimed to evaluate the extraction of Corymbia citriodora (Hook.) K.D.Hill and L.A.S.Johnson essential oil by steam distillation under reduced pressure. Yield and composition of the essential oils obtained at different system pressures were analyzed. System pressure had a significant influence on essential oil yield, resulting in a reduction of 78.6% when the pressure was reduced from 690 Torr to 240 Torr. There were also changes in essential oil composition, with an increase in citronellol content (oxygenated monoterpene). However, the major compound (citronellal) remained at a high content in all tests. Regarding the extracted mass of the major compounds (citronellal, citronellol), there was a significant reduction for all when the system pressure was reduced. Although the reduction in the pressure of the system caused a reduction in oil yield, it was possible to carry out the steps of extraction and purification of the major compound simultaneously. Reduced pressure extraction may decrease process time, increasing its efficiency and reducing costs in the extraction of essential oils. Full article
(This article belongs to the Special Issue Green and Environmentally Sustainable Chemical Processes)
Show Figures

Figure 1

Review
Functional Nanostructured Materials in the Cosmetics Industry: A Review
ChemEngineering 2023, 7(4), 66; https://doi.org/10.3390/chemengineering7040066 - 21 Jul 2023
Viewed by 387
Abstract
Cosmetics have always been in demand across the globe among people of all age groups. In the modern cosmetic world, nanostructured materials have proven hugely advantageous in producing cosmeceuticals or ‘nano-cosmeceuticals’ and various beauty products. The application of nanostructured materials in cosmetic products [...] Read more.
Cosmetics have always been in demand across the globe among people of all age groups. In the modern cosmetic world, nanostructured materials have proven hugely advantageous in producing cosmeceuticals or ‘nano-cosmeceuticals’ and various beauty products. The application of nanostructured materials in cosmetic products possesses some challenges in terms of short- and long-term safety and environmental issues, despite their growing popularity. The nanostructured particles in cosmeceuticals provide a targeted route of administration due to their high penetrability, site selectivity, high effectiveness, prolonged activity, and drug encapsulation potential. However, standard methods for toxicity evaluation may not be relevant for cosmeceuticals, leading to the need for an alternative methodology. This review article compiles detailed descriptions of all significant aspects of nanostructured materials in the cosmetics industry, which include the synthesis and characterization of relevant nanostructured materials for cosmeceuticals, state-of-the-art practices, mechanisms for the synthesis of advanced materials, toxicological concerns in terms of health risks in humans, and environmental concerns. Also, a proposal for new approaches in terms of regulatory measures to mitigate these problems has been suggested. The primary focus of this article is to provide a comprehensive outlook on this subject area and contribute to the exploration of new prospects and emerging roles of nanostructured materials in the cosmetics industry. Full article
Show Figures

Figure 1

Article
Process Optimization of Biodiesel from Used Cooking Oil in a Microwave Reactor: A Case of Machine Learning and Box–Behnken Design
ChemEngineering 2023, 7(4), 65; https://doi.org/10.3390/chemengineering7040065 - 21 Jul 2023
Viewed by 552
Abstract
In the present investigation, response surface methodology (RSM) and machine learning (ML) are applied to the biodiesel production process via acid-catalyzed transesterification and esterification of triglyceride (TG). In order to optimize the production of biodiesel from used cooking oil (UCO) in a microwave [...] Read more.
In the present investigation, response surface methodology (RSM) and machine learning (ML) are applied to the biodiesel production process via acid-catalyzed transesterification and esterification of triglyceride (TG). In order to optimize the production of biodiesel from used cooking oil (UCO) in a microwave reactor, these models are also compared. During the process, Box–Behnken design (BBD) and an artificial neural network (ANN) were used to evaluate the effect of the catalyst content (3.0–7.0 wt.%), methanol/UCO mole ratio (12:1–18:1), and irradiation time (5.0–9.0 min). The process conditions were adjusted and developed to predict the highest biodiesel yield using BBD with the RSM approach and an ANN model. With optimal process parameters of 4.94 wt.% catalyst content, 16.76:1 methanol/UCO mole ratio, and 8.13 min of irradiation time, a yield of approximately 98.62% was discovered. The coefficient of determination (R2) for the BBD model was found to be 0.9988, and the correlation coefficient (R) for the ANN model was found to be 0.9994. According to the findings, applying RSM and ANN models is advantageous when optimizing the biodiesel manufacturing process as well as making predictions about it. This renewable and environmentally friendly process has the potential to provide a sustainable route for the synthesis of high-quality biodiesel from waste oil with a low cost and high acid value. Full article
Show Figures

Graphical abstract

Article
Development of Mosquito-Repellent Camouflage Fabric Using Eucalyptus Oil with Moringa oleifera Gum
ChemEngineering 2023, 7(4), 64; https://doi.org/10.3390/chemengineering7040064 - 20 Jul 2023
Viewed by 248
Abstract
Military personnel are exposed to several harsh conditions and mosquitos in mountains and wild forests. Mosquito-repellent textiles can help them to cope with such conditions. The present research work established a sustainable approach for fabricating microcapsules from Eucalyptus oil, Moringa oleifera, and [...] Read more.
Military personnel are exposed to several harsh conditions and mosquitos in mountains and wild forests. Mosquito-repellent textiles can help them to cope with such conditions. The present research work established a sustainable approach for fabricating microcapsules from Eucalyptus oil, Moringa oleifera, and Arabic gum via a complex coacervation method. Moringa oleifera and Arabic gums were utilized as the outer shell of the microcapsules, whereas the core part was made of Eucalyptus oil in different concentrations. The military camouflage-printed polyester/cotton (PC) blended fabric was coated with the as-prepared microcapsules using the pad–dry–cure technique. The surface morphology of the microcapsules was examined using an optical microscope and scanning electron microscope (SEM), and the coated fabric’s mosquito-repellent property was investigated using a specified cage test according to a standard testing protocol. The water absorbency and air permeability of the treated samples were also evaluated in order to learn about the comfort properties. The cage test results revealed that the coated fabric had a good tendency to repel the mosquitoes used in the cage test. In addition, the coated fabric showed significant durability even after several rigorous washing cycles. However, the application of microcapsules to the fabric slightly affected the water absorbency and air permeability of the fabric. This study presents a novel sustainable approach for fabricating microcapsules from the mentioned precursors and their application in the field of textiles, particularly for military purposes. Full article
(This article belongs to the Special Issue Green and Environmentally Sustainable Chemical Processes)
Show Figures

Graphical abstract

Article
Evaluation of Jet Flooding in Distillation Column Olefins Plant on Naphtha to LPG Feed Substitution
ChemEngineering 2023, 7(4), 63; https://doi.org/10.3390/chemengineering7040063 - 20 Jul 2023
Viewed by 252
Abstract
The naphtha cracking process is the most commonly used technology for the production of ethylene, propylene, mixed C4s (including 1,3-butadiene and other C4 components), and pygas (pyrolysis gasoline, a mixture of benzene, toluene, and xylene), all of which are olefins. The cracking [...] Read more.
The naphtha cracking process is the most commonly used technology for the production of ethylene, propylene, mixed C4s (including 1,3-butadiene and other C4 components), and pygas (pyrolysis gasoline, a mixture of benzene, toluene, and xylene), all of which are olefins. The cracking furnace and distillation columns are the primary operational units. The raw material is cracked and undergoes reactions in the cracking furnaces, while the distillation columns are responsible for separating the products. Raw material costs account for 80% of production costs. There is also the possibility of using LPG as a less expensive alternative to some of the naphtha. However, changing the raw material would affect the operability of the distillation columns and influence the yield on the cracking side. To determine the optimal naphtha substitution for LPG without causing hydraulic problems (such as jet flooding) in the distillation columns, analysis using simulation tools must be conducted. A reliability model is being developed to simulate the substitution of naphtha with other feed stocks by comparing simulation results with data from the actual plant. The LPG flow is a variable that is freely adjusted to substitute for naphtha. Simulation tools can be used to assess the effects of economically advantageous naphtha substitution for LPG without compromising plant operability. The optimum naphtha substitution rate is 21.14% from the base case, resulting in jet flooding occurring at Propylene Fractionator No. 2. By implementing this substitution, the benefits that can be obtained amount to USD 22,772.02 per hour. Full article
(This article belongs to the Special Issue Process Intensification for Chemical Engineering and Processing)
Show Figures

Figure 1

Article
Using the Response Surface Methodology to Treat Tannery Wastewater with the Bicarbonate-Peroxide System
ChemEngineering 2023, 7(4), 62; https://doi.org/10.3390/chemengineering7040062 - 16 Jul 2023
Viewed by 423
Abstract
A bicarbonate-peroxide (BAP) system was evaluated to improve the quality of industrial tannery wastewater using an I-optimal experimental design with four variables (temperature, initial pH, bicarbonate, and H2O2 concentration). The response variables were COD removal, ammonia nitrogen removal, and nitrate [...] Read more.
A bicarbonate-peroxide (BAP) system was evaluated to improve the quality of industrial tannery wastewater using an I-optimal experimental design with four variables (temperature, initial pH, bicarbonate, and H2O2 concentration). The response variables were COD removal, ammonia nitrogen removal, and nitrate concentration. The most critical variables were optimized using a The process was carried out in 500 mL reactors, the operational volume of 250 mL, and the agitation was at 550 rpm. A new I-optimal reaction surface design at two levels (bicarbonate concentration 0.01–0.3 mol/L and H2O2 0.05–0.35 mol/L) was used to obtain the optimal data of the experimental design. Optimal conditions were validated by one-way ANOVA statistical analysis using Prism software. Temperatures above 50 °C promote the efficiency of the BAP system, and slightly acidic initial pHs allow stabilization of the system upon inclusion of bicarbonate and peroxide in the concentration of bicarbonate, which is critical for the reaction with peroxide and formation of reactive oxygen species. With the validated optimal data, removal percentages above 78% were achieved for nitrites, ammonia nitrogen, chromium, TSS, BOD, conductivity, chromium, and chlorides; for COD and TOC, removal percentages were above 45%, these results being equal and even higher than other AOPs implemented for this type of water. Full article
(This article belongs to the Special Issue Chemical Engineering in Wastewater Treatment)
Show Figures

Figure 1

Review
Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture
ChemEngineering 2023, 7(4), 61; https://doi.org/10.3390/chemengineering7040061 - 12 Jul 2023
Viewed by 573
Abstract
Nanotechnology has an extensive series of applications in agronomy and has an important role in the future of sustainable agriculture. The agricultural industries should be supported by innovative active materials such as nanofertilizers, nanofungicides, and nanopesticides. It is necessary in the current situation [...] Read more.
Nanotechnology has an extensive series of applications in agronomy and has an important role in the future of sustainable agriculture. The agricultural industries should be supported by innovative active materials such as nanofertilizers, nanofungicides, and nanopesticides. It is necessary in the current situation to meet the dietary needs of the constantly expanding world population. Nearly one-third of crops grown conventionally suffer damage, mostly as a result of pest infestation, microbiological assaults, natural disasters, poor soil quality, and a lack of nutrients. To solve these problems, we urgently need more inventive technology. The application of nanotechnology in agriculture provides intelligent methods for delivering nutrients, herbicides, and genetic materials for improving soil fertility, stress tolerance, and protection. The world is currently confronting significant issues related to the rising demand for enough food and safe food as well as dealing with the environmental damage caused by traditional agriculture. Nanomaterials have important applications in agriculture for increasing plant growth and development and the quality and quantity of the crops and controlling and managing agricultural diseases. The major objective of this article is to describe the various applications and importance of nanoparticles in the agriculture sector. Full article
Show Figures

Figure 1

Article
Numerical Study of CO2 Removal from Inhalational Anesthesia System by Using Gas-Ionic Liquid Membrane
ChemEngineering 2023, 7(4), 60; https://doi.org/10.3390/chemengineering7040060 - 12 Jul 2023
Viewed by 441
Abstract
Inhalational anesthesia is supplied through an assisted ventilation system. It is mostly composed of xenon or nitrous oxide, halogenated hydrocarbons (HHCs), and oxygen. In order to reduce costs of the anesthesia compounds, the remaining anesthetics present in exhalation are recycled and reused, in [...] Read more.
Inhalational anesthesia is supplied through an assisted ventilation system. It is mostly composed of xenon or nitrous oxide, halogenated hydrocarbons (HHCs), and oxygen. In order to reduce costs of the anesthesia compounds, the remaining anesthetics present in exhalation are recycled and reused, in order to minimize the amount of fresh anesthesia. An alkali hydroxide mixture (called soda lime) is employed in order to remove CO2 from the exhalation. However toxic compounds may be formed during the reaction of soda lime with halogenated hydrocarbons. Ionic liquids (ILs) have several advantages such as non-volatility, functionality, high carbon solubility, and low energy requirements for regeneration. In the framework of this research, carbon dioxide removal with ionic liquids has been numerically studied. COMSOL multi-physics finite element software has been applied. It solves the continuity, fluid flow, and diffusion equations. A new algorithm has been developed for calculating the infrared (IR) radiation absorption of CO2. Its absorption coefficient has wavelength-dependent properties. The gaseous absorption coefficient has been calculated by using HITRAN spectral database. It has been found that the CO2 is absorbed almost completely by the 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]) ionic liquid after a period of 1000 s. It has been shown that the absorption coefficient of CO2 can be neglected in the interval below 1.565 μm, and then at 1.6 μm, it increases to the same order as that for CO. Thus, it is possible to detect CO2 by applying a laser diode which is capable to transmit IR radiation at a wavelength of 1.6 μm. This time period is a function of the diffusion coefficient of the CO2 in the membrane and in the ionic liquid. Full article
Show Figures

Figure 1

Article
One-Dimensional Modeling of Mass Transfer Processes in an Annular Centrifugal Contactor
ChemEngineering 2023, 7(4), 59; https://doi.org/10.3390/chemengineering7040059 - 12 Jul 2023
Viewed by 306
Abstract
Due to the importance of process intensification, modeling of Annular Centrifugal Contactors (ACCs) is becoming of increasing interest. By the current state of scientific knowledge, universal modeling without high computing power of these complex apparatuses is not possible to a satisfactory degree. In [...] Read more.
Due to the importance of process intensification, modeling of Annular Centrifugal Contactors (ACCs) is becoming of increasing interest. By the current state of scientific knowledge, universal modeling without high computing power of these complex apparatuses is not possible to a satisfactory degree. In this article, a one-dimensional model to describe the mass transfer during a physical extraction process in an ACC is presented. The model is based on solely geometrical data and operating conditions of the ACC, as well as physical properties of the components. Regarding the selection of physical properties, only physical properties that are easily accessible were used. With this model, mass transfer calculations are possible and therefore, the output concentrations can be predicted. Simulations of an ACC based on the model were done by creating and running a python code. Validation of the model was conducted by varying and comparing operating conditions in both the simulation and the experiments. Validation was completed successfully for a representative system of components and showed good agreement over a range of rotational frequencies and temperatures. Full article
(This article belongs to the Special Issue Process Intensification for Chemical Engineering and Processing)
Show Figures

Figure 1

Article
Optimizing the Sulfates Content of Cement Using Neural Networks and Uncertainty Analysis
ChemEngineering 2023, 7(4), 58; https://doi.org/10.3390/chemengineering7040058 - 21 Jun 2023
Viewed by 626
Abstract
This study aims to approximate the optimum sulfate content of cement, applying maximization of compressive strength as a criterion for cement produced in industrial mills. The design includes tests on four types of cement containing up to three main components and belonging to [...] Read more.
This study aims to approximate the optimum sulfate content of cement, applying maximization of compressive strength as a criterion for cement produced in industrial mills. The design includes tests on four types of cement containing up to three main components and belonging to three strength classes. We developed relationships correlating to 7- and 28-day strength with the sulfate and clinker content of the cement (CL), as well as the clinker mineral composition (tricalcium silicate, C3S, tricalcium aluminate, C3A). We correlated strength with the ratio %SO3/CL and the molecular ratios MSO3/C3S and MSO3/C3A. The data processing stage proved that artificial neural networks (ANNs) fit the results’ distribution better than a parabolic function, providing reliable models. The optimal %SO3/CL value for 7- and 28-day strength was 2.85 and 3.00, respectively. Concerning the ratios of SO3 at the mineral phases for 28-day strength, the best values were MSO3/C3S = 0.132–0.135 and MSO3/C3A = 1.55. We implemented some of the ANNs to gain a wide interval of input variables’ values. Thus, the approximations of SO3 optimum using ANNs had a relatively broad application in daily plant quality control, at least as a guide for experimental design. Finally, we investigated the impact of SO3 uncertainty on the 28-day strength variance using the error propagation method. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Figure 1

Article
Numerical Study of Dry Reforming of Methane in Packed and Fluidized Beds: Effects of Key Operating Parameters
ChemEngineering 2023, 7(3), 57; https://doi.org/10.3390/chemengineering7030057 - 20 Jun 2023
Viewed by 639
Abstract
Replacing the conventionally used steam reforming of methane (SRM) with a process that has a smaller carbon footprint, such as dry reforming of methane (DRM), has been found to greatly improve the industry’s utilization of greenhouse gases (GHGs). In this study, we numerically [...] Read more.
Replacing the conventionally used steam reforming of methane (SRM) with a process that has a smaller carbon footprint, such as dry reforming of methane (DRM), has been found to greatly improve the industry’s utilization of greenhouse gases (GHGs). In this study, we numerically modeled a DRM process in lab-scale packed and fluidized beds using the Eulerian–Lagrangian approach. The simulation results agree well with the available experimental data. Based on these validated models, we investigated the effects of temperature, inlet composition, and contact spatial time on DRM in packed beds. The impacts of the side effects on the DRM process were also examined, particularly the role the methane decomposition reaction plays in coke formation at high temperatures. It was found that the coking amount reached thermodynamic equilibrium after 900 K. Additionally, the conversion rate in the fluidized bed was found to be slightly greater than that in the packed bed under the initial fluidization regime, and less coking was observed in the fluidized bed. The simulation results show that the adopted CFD approach was reliable for modeling complex flow and reaction phenomena at different scales and regimes. Full article
(This article belongs to the Topic Chemical and Biochemical Processes for Energy Sources)
Show Figures

Figure 1

Back to TopTop