Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (49,208)

Search Parameters:
Journal = Molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Following the Decomposition of Hydrogen Peroxide in On-Site Mixture Explosives: Study of the Effect of the Auxiliary Oxidising Agent and Binder
Molecules 2023, 28(16), 5957; https://doi.org/10.3390/molecules28165957 - 08 Aug 2023
Abstract
The issues of safety and its impact on both human health and the environment are on-going challenges in the field of explosives (EXs). Consequently, environmentally-friendly EXs have attracted significant interest. Our previous work, dedicated to on-site mixed (OSM) EXs utilising concentrated hydrogen peroxide [...] Read more.
The issues of safety and its impact on both human health and the environment are on-going challenges in the field of explosives (EXs). Consequently, environmentally-friendly EXs have attracted significant interest. Our previous work, dedicated to on-site mixed (OSM) EXs utilising concentrated hydrogen peroxide (HTP) as an oxidising agent, revealed that the gradual decomposition of HTP may be harnessed as an additional safety measure, e.g., protection from theft. The rate of HTP decomposition is dependent on the OSM components, but this dependence is not straightforward. Relevant information about the decomposition of HTP in such complex mixtures is unavailable in literature. Consequently, in this work, we present a more detailed picture of the factors influencing the dynamics of HTP decomposition in EX formulations. The relevant measurement and validation methodology is laid out and the most relevant factors for determining the rate of HTP decomposition are highlighted. Among these, the choice of auxiliary oxidising agent is of particular relevance and it can be seen that the choice to use ammonium nitrate (AN), made in previous works dealing with HTP-based EXs, is sub-optimal in terms of maintaining the stability of HTP. Another important finding is that glass microspheres are not as inert to HTP as would be expected, as replacing them with polymer microspheres significantly slowed the decomposition of HTP in the investigated OSM samples. Full article
(This article belongs to the Special Issue Research and Application of Nanoenergetic Materials)
Review
Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine
Molecules 2023, 28(16), 5955; https://doi.org/10.3390/molecules28165955 - 08 Aug 2023
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, [...] Read more.
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings. Full article
(This article belongs to the Special Issue Nanoparticle-Based Drug Delivery Systems)
Show Figures

Graphical abstract

Article
A Chiral Relay Race: Stereoselective Synthesis of Axially Chiral Biaryl Diketones through Ring-Opening of Optical Dihydrophenan-threne-9,10-diols
Molecules 2023, 28(16), 5956; https://doi.org/10.3390/molecules28165956 - 08 Aug 2023
Abstract
We report herein a point-to-axial chirality transfer reaction of optical dihydrophenanthrene-9,10-diols for the synthesis of axially chiral diketones. Two sets of conditions, namely a basic tBuOK/air atmosphere and an acidic NaClO/n-Bu4NHSO4, were developed to oxidatively cleave [...] Read more.
We report herein a point-to-axial chirality transfer reaction of optical dihydrophenanthrene-9,10-diols for the synthesis of axially chiral diketones. Two sets of conditions, namely a basic tBuOK/air atmosphere and an acidic NaClO/n-Bu4NHSO4, were developed to oxidatively cleave the C-C bond, resulting in the formation of axially chiral biaryl diketones. Finally, brief synthetic applications of the obtained chiral aryl diketones were demonstrated. Full article
Review
Advancements in Sustainable Natural Dyes for Textile Applications: A Review
Molecules 2023, 28(16), 5954; https://doi.org/10.3390/molecules28165954 - 08 Aug 2023
Abstract
The dyeing and finishing step represents a clear hotspot in the textile supply chain as the wet processing stages require significant amounts of water, energy, and chemicals. In order to tackle environmental issues, natural dyes are gaining attention from researchers as more sustainable [...] Read more.
The dyeing and finishing step represents a clear hotspot in the textile supply chain as the wet processing stages require significant amounts of water, energy, and chemicals. In order to tackle environmental issues, natural dyes are gaining attention from researchers as more sustainable alternatives to synthetic ones. This review discusses the topic of natural dyes, providing a description of their main features and differences compared to synthetic dyes, and encompasses a summary of recent research in the field of natural dyes with specific reference to the following areas of sustainable innovation: extraction techniques, the preparation of substrates, the mordanting process, and the dyeing process. The literature review showed that promising new technologies and techniques have been successfully employed to improve the performance and sustainability of natural dyeing processes, but several limitations such as the poor fastness properties of natural dyes, their low affinity with textiles substrates, difficulties in the reproducibility of shades, as well as other factors such as cost-effectiveness considerations, still prevent industry from adopting natural dyes on a larger scale and will require further research in order to expand their use beyond niche applications. Full article
(This article belongs to the Section Colorants)
Show Figures

Graphical abstract

Review
Application of New COF Materials in Secondary Battery Anode Materials
Molecules 2023, 28(16), 5953; https://doi.org/10.3390/molecules28165953 - 08 Aug 2023
Abstract
Covalent organic framework materials (COFs), as a new type of organic porous material, not only have the characteristics of flexible structure, abundant resources, environmental friendliness, etc., but also have the characteristics of a regular structure and uniform pore channels, so they have broad [...] Read more.
Covalent organic framework materials (COFs), as a new type of organic porous material, not only have the characteristics of flexible structure, abundant resources, environmental friendliness, etc., but also have the characteristics of a regular structure and uniform pore channels, so they have broad application prospects in secondary batteries. Their functional group structure, type, and number of active sites play a crucial role in the performance of different kinds of batteries. Therefore, this article starts from these aspects, summarizes the application and research progress of the COF anode materials used in lithium-ion batteries, sodium-ion batteries, and potassium-ion batteries in recent years, discusses the energy storage mechanism of COF materials, and expounds the application prospects of COF electrodes in the field of energy storage. Full article
Show Figures

Graphical abstract

Article
The Effect of Plastic-Related Compounds on Transcriptome-Wide Gene Expression on CYP2C19-Overexpressing HepG2 Cells
Molecules 2023, 28(16), 5952; https://doi.org/10.3390/molecules28165952 - 08 Aug 2023
Abstract
In recent years, plastic and especially microplastic in the oceans have caused huge problems to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk, and placenta, underlining their ability to enter the human body, presumably via the [...] Read more.
In recent years, plastic and especially microplastic in the oceans have caused huge problems to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk, and placenta, underlining their ability to enter the human body, presumably via the food chain and other yet-unknown mechanisms. In addition, plastic contains plasticizers, antioxidants, or lubricants, whose impact on human health is also under investigation. At the cellular level, the most important enzymes involved in the metabolism of xenobiotic compounds are the cytochrome P450 monooxygenases (CYPs). Despite their extensive characterization in the maintenance of cellular balance, their interactions with plastic and related products are unexplored. In this study, the possible interactions between several plastic-related compounds and one of the most important cytochromes, CYP2C19, were analyzed. By applying virtual compound screening and molecular docking to more than 1000 commercially available plastic-related compounds, we identified candidates that are likely to interact with this protein. A growth inhibition assay confirmed their cytotoxic activity on a CYP2C19-transfected hepatic cell line. Subsequently, we studied the effect of the selected compounds on the transcriptome-wide gene expression level by conducting RNA sequencing. Three candidate molecules were identified, i.e., 2,2′-methylene bis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl) ethane, and 2,2′-methylene bis(6-cyclohexyl-4-methylphenol)), which bound with a high affinity to CYP2C19 in silico. They exerted a profound cytotoxicity in vitro and interacted with several metabolic pathways, of which the ‘cholesterol biosynthesis process’ was the most affected. In addition, other affected pathways involved mitosis, DNA replication, and inflammation, suggesting an increase in hepatotoxicity. These results indicate that plastic-related compounds could damage the liver by affecting several molecular pathways. Full article
(This article belongs to the Special Issue In Silico Methods Applied in Drug and Pesticide Discovery)
Show Figures

Figure 1

Article
Computational Insights into Excited State Intramolecular Double Proton Transfer Behavior Associated with Atomic Electronegativity for Bis(2′-benzothiazolyl)hydroquinone
Molecules 2023, 28(16), 5951; https://doi.org/10.3390/molecules28165951 - 08 Aug 2023
Abstract
Inspired by the distinguished regulated photochemical and photophysical properties of 2-(2′-hydroxyphenyl)benzazole derivatives, in this work, the novel bis(2′-benzothiazolyl)hydroquinone (BBTHQ) fluorophore is explored, looking at its photo-induced behaviors associated with different substituted atomic electronegativities, i.e., BBTHQ-SO, BBTHQ-SS and BBTHQ-Se compounds. From the structural changes, [...] Read more.
Inspired by the distinguished regulated photochemical and photophysical properties of 2-(2′-hydroxyphenyl)benzazole derivatives, in this work, the novel bis(2′-benzothiazolyl)hydroquinone (BBTHQ) fluorophore is explored, looking at its photo-induced behaviors associated with different substituted atomic electronegativities, i.e., BBTHQ-SO, BBTHQ-SS and BBTHQ-Se compounds. From the structural changes, infrared (IR) vibrational variations and simulated core-valence bifurcation (CVB) indexes for the dual hydrogen bonds for the three BBTHQ derivatives, we see that low atomic electronegativity could be conducive to enhancing hydrogen bonding effects in the S1 state. Particularly, the O4-H5⋯N6 of BBTHQ-SO and the O1-H2⋯N3 of BBTHQ-SSe could be strengthened to be more intensive in the S1 state, respectively. Looking into the charge recombination induced by photoexcitation, we confirm a favorable ESDPT trend deriving from the charge reorganization of the dual hydrogen bonding regions. By constructing the potential energy surfaces (PESs) along with the ESDPT paths for the BBTHQ-SO, BBTHQ-SS and BBTHQ-Se compounds, we not only unveil stepwise ESDPT behaviors, but also present an atomic electronegativity-regulated ESDPT mechanism. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Figure 1

Article
Hydrogen-Bonding-Driven Nontraditional Photoluminescence of a β-Enamino Ester
Molecules 2023, 28(16), 5950; https://doi.org/10.3390/molecules28165950 - 08 Aug 2023
Viewed by 31
Abstract
Nontraditional luminogens (NTLs) do not contain any conventional chromophores (large π-conjugated structures), but they do show intrinsic photoluminescence. To achieve photoluminescence from NTLs, it is necessary to increase the extent of through-space conjugation (TSC) and suppress nonradiative decay. Incorporating strong physical interactions such [...] Read more.
Nontraditional luminogens (NTLs) do not contain any conventional chromophores (large π-conjugated structures), but they do show intrinsic photoluminescence. To achieve photoluminescence from NTLs, it is necessary to increase the extent of through-space conjugation (TSC) and suppress nonradiative decay. Incorporating strong physical interactions such as hydrogen bonding is an effective strategy to achieve this. In this work, we carried out comparative studies on the photoluminescence behaviors of two β-enamino esters with similar chemical structures, namely methyl 3-aminocrotonate (MAC) and methyl (E)-3-(1-pyrrolidinyl)-2-butenoate (MPB). MAC crystal emits blue fluorescence under UV irradiation. The critical cluster concentration of MAC in ethanol solutions was determined by studying the relationship between the photoluminescence intensity (UV–visible absorbance) and concentration. Furthermore, MAC exhibits solvatochromism, and its emission wavelength redshifts as the solvent polarity increases. On the contrary, MPB is non-emissive in both solid state and solutions. Crystal structures and theoretical calculation prove that strong inter- and intramolecular hydrogen bonds lead to the formation of large amounts of TSC of MAC molecules in aggregated states. No hydrogen bonds and thus no effective TSC can be formed between or within MPB molecules, and this is the reason for its non-emissive nature. This work provides a deeper understanding of how hydrogen bonding contributes to the luminescence of NTLs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Article
Actinomycins from Soil-Inhabiting Streptomyces as Sources of Antibacterial Pigments for Silk Dyeing
Molecules 2023, 28(16), 5949; https://doi.org/10.3390/molecules28165949 - 08 Aug 2023
Viewed by 79
Abstract
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial [...] Read more.
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial dyes for silk fabrics. Out of 194 isolates, 44 produced pigments on broken rice as a solid substrate culture. Eight antibacterial pigmented isolates from under Magnolia baillonii (TBRC 15924, TBRC 15927, TBRC 15931), Magnolia rajaniana (TBRC 15925, TBRC 15926, TBRC 15928, TBRC 15930), and Cinnamomum parthenoxylon (TBRC 15929) were studied in more detail. TBRC 15927 was the only isolate where all the crude extracts inhibited the growth of the test organisms, Staphylococcus epidermidis TISTR 518 and S. aureus DMST 4745. The bioactive compounds present in TBRC 15927 were identified through LC-MS/MS analysis as belonging to the actinomycin group, actinomycin D (or X1), X2, and X. Also, the ethyl acetate crude extract exhibited non-toxicity at an IC50 value of 0.029 ± 0.008 µg/mL on the mouse fibroblast L-929 assay. From the 16S rRNA gene sequence analysis, TBRC 15927 had 100% identity with Streptomyces gramineus JR-43T. Raw silk dyed with the positive antimicrobial TBRC 15927 extract (8.35 mg/mL) had significant (>99.99%) antibacterial properties. Streptomyces gramineus TBRC 15927 is the first actinomycin-producing strain reported to grow on broken rice and shows promise for antibacterial silk dyeing. Full article
(This article belongs to the Section Colorants)
Show Figures

Figure 1

Article
Exploring Species-Specificity in TLR4/MD-2 Inhibition with Amphiphilic Lipid A Mimicking Glycolipids
Molecules 2023, 28(16), 5948; https://doi.org/10.3390/molecules28165948 - 08 Aug 2023
Viewed by 78
Abstract
The Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex is a key receptor of the innate immune system and a major driver of inflammation that is responsible for the multifaceted defense response to Gram-negative infections. However, dysfunction in the tightly regulated mechanisms [...] Read more.
The Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex is a key receptor of the innate immune system and a major driver of inflammation that is responsible for the multifaceted defense response to Gram-negative infections. However, dysfunction in the tightly regulated mechanisms of TLR4-mediated signaling leads to the uncontrolled upregulation of local and systemic inflammation, often resulting in acute or chronic disease. Therefore, the TLR4/MD-2 receptor complex is an attractive target for the design and development of anti-inflammatory therapies which aim to control the unrestrained activation of TLR4-mediated signaling. Complex structure–activity relationships and species-specificity behind ligand recognition by the TLR4/MD-2 complex complicate the development of MD-2-specific TLR4 antagonists. The restriction of the conformational flexibility of the disaccharide polar head group is one of the key structural features of the newly developed lipid A—mimicking glycophospholipids, which are potential inhibitors of TLR4-mediated inflammation. Since phosphorylation has a crucial influence on MD-2–ligand interaction, glycolipids with variable numbers and positioning of phosphate groups were synthesized and evaluated for their ability to inhibit TLR4-mediated pro-inflammatory signaling in human and murine immune cells. A bis-phosphorylated glycolipid was found to have nanomolar antagonist activity on human TLR4 while acting as a partial agonist on murine TLR4. The glycolipid inhibited mTLR4/MD-2-mediated cytokine release, acting as an antagonist in the presence of lipopolysaccharide (LPS), but at the same time induced low-level cytokine production. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

Article
Enhancement of Electrocatalytic and Pseudocapacitive Properties as a Function of Structural Order in A2Fe2O5 (A = Sr, Ba)
Molecules 2023, 28(16), 5947; https://doi.org/10.3390/molecules28165947 - 08 Aug 2023
Viewed by 82
Abstract
Significant enhancements of electrocatalytic activities for both half-reactions of water-electrolysis, i.e., oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as well as pseudocapacitive charge-storage properties are demonstrated upon changing the structural order in a perovskite-type system. The structural change is prompted by [...] Read more.
Significant enhancements of electrocatalytic activities for both half-reactions of water-electrolysis, i.e., oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as well as pseudocapacitive charge-storage properties are demonstrated upon changing the structural order in a perovskite-type system. The structural change is prompted by the increase in the ionic radius of the A-site ion in A2Fe2O5. The structure of Sr2Fe2O5 consists of alternating layers of FeO6 octahedra and FeO4 tetrahedra, whereas Ba2Fe2O5 comprises seven different coordination geometries for Fe. We note that the catalytically active metal, i.e., iron, and the oxygen stoichiometry are the same for both materials. Nevertheless, the change in the structural order results in significantly greater electrocatalytic activity of Ba2Fe2O5, manifested in smaller overpotentials, smaller charge-transfer resistance, greater electrocatalytic current, and faster reaction kinetics. In addition, this material shows significantly enhanced pseudocapacitive properties, with greater specific capacitance and energy density compared to Sr2Fe2O5. These findings indicate the important role of structural order in directing the electrochemical properties. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

Article
Methods of Analysis and Identification of Betulin and Its Derivatives
Molecules 2023, 28(16), 5946; https://doi.org/10.3390/molecules28165946 - 08 Aug 2023
Viewed by 118
Abstract
This scientific work presents practical and theoretical material on the methods of analysis and identification of betulin and its key derivatives. The properties of betulin and its derivatives, which are determined by the structural features of this class of compounds and their tendency [...] Read more.
This scientific work presents practical and theoretical material on the methods of analysis and identification of betulin and its key derivatives. The properties of betulin and its derivatives, which are determined by the structural features of this class of compounds and their tendency to form dimers, polymorphism and isomerization, are considered. This article outlines ways to improve not only the bioavailability but also the solubility of triterpenoids, as well as any hydrophobic drug substances, through chemical transformations by introducing various functional groups, such as carboxyl, hydroxyl, amino, phosphate/phosphonate and carbonyl. The authors of this article summarized the physicochemical characteristics of betulin and its compounds, systematized the literature data on IR and NMR spectroscopy and gave the melting temperatures of key acids and aldehydes based on betulin. Full article
Show Figures

Figure 1

Review
Tris(pentafluorophenyl)borane-catalyzed Hydride Transfer Reactions in Polysiloxane Chemistry—Piers–Rubinsztajn Reaction and Related Processes
Molecules 2023, 28(16), 5941; https://doi.org/10.3390/molecules28165941 - 08 Aug 2023
Viewed by 104
Abstract
Tris(pentafluorophenyl)borane (TPFPB) is a unique Lewis acid that catalyzes the condensation between hydrosilanes (Si-H) and alkoxysilanes (Si-OR), leading to the formation of siloxane bonds (Si-OSi) with the release of hydrocarbon (R-H) as a byproduct—the so-called Piers–Rubinsztajn reaction. The analogous reactions of hydrosilanes with [...] Read more.
Tris(pentafluorophenyl)borane (TPFPB) is a unique Lewis acid that catalyzes the condensation between hydrosilanes (Si-H) and alkoxysilanes (Si-OR), leading to the formation of siloxane bonds (Si-OSi) with the release of hydrocarbon (R-H) as a byproduct—the so-called Piers–Rubinsztajn reaction. The analogous reactions of hydrosilanes with silanols (Si-OH), alcohols (R-OH), ethers (R-OR′) or water in the presence of TPFPB leads to the formation of a siloxane bond, alkoxysilane (Si-OR or Si-OR′) or silanol (Si-OH), respectively. The above processes, often referred to as Piers–Rubinsztajn reactions, provide new synthetic tools for the controlled synthesis of siloxane materials under mild conditions with high yields. The common feature of these reactions is the TPFPB-mediated hydride transfer from silicon to carbon or hydrogen. This review presents a summary of 20 years of research efforts related to this field, with a focus on new synthetic methodologies leading to numerous previously difficult to synthesize well-defined siloxane oligomers, polymers and copolymers of a complex structure and potential applications of these new materials. In addition, the mechanistic aspects of the recently discovered reactions involving hydride transfer from silicon to silicon are discussed in more detail. Full article
(This article belongs to the Special Issue New Boron Chemistry: Current Advances and Future Prospects)
Show Figures

Graphical abstract

Article
Effects of Quince Gel and Hesperidin Mixture on Experimental Endometriosis
Molecules 2023, 28(16), 5945; https://doi.org/10.3390/molecules28165945 - 08 Aug 2023
Viewed by 107
Abstract
Objectives: Endometriosis (EM) is the presence of endometrial tissue outside the uterus. This study aimed to examine the effects of quince gel and hesperidin treatment on uterine tissue in an experimental endometriosis model. Materials and Methods: Thirty-two rats were categorized into four groups [...] Read more.
Objectives: Endometriosis (EM) is the presence of endometrial tissue outside the uterus. This study aimed to examine the effects of quince gel and hesperidin treatment on uterine tissue in an experimental endometriosis model. Materials and Methods: Thirty-two rats were categorized into four groups as sham, EM, EM+quince gel (QG), and EM+QG+Hesperidin (HES). The endometriosis (EM) model was induced with surgical intervention. Estradiol benzoate (EB) was used to induce endometrial hyperplasia. In the EM group, EB was given to rats for 7 days. The EM+QG group received 2 cc QG for 21 days. HES treatment was given for 21 days after EM induction. At the end of the experiment, blood was taken from the animals and the serum total antioxidant status (TAS) and total oxidant status (TOS) values were studied. Uterine tissues were dissected and processed for histological paraffin embedding. Tissues were fixed in 4% glutaraldehyde solution and processed for ultrastructural analysis. Results: After EM, QG and HES treatment significantly increased the TAS and decreased the TOS value. EM caused epithelial and glandular degeneration, thinning of the basal membranes, and vascular dilatation with increased fibrosis and edema. QG+HES restored the pathology and showed protective effects in uterine tissues. Caspase-3 expression was increased in the epithelium, glands, and muscle layers of the EM group. In EM+QG+HES, hesperidin protected cell survival and decreased Caspase-3 expression in uterine tissues. TNF-α expression was intense in inflammatory cells and the muscle layer in the EM group. HES reduced inflammation by decreasing the TNF-α expression. MAPK expression was increased after EM induction in epithelial, glandular, and inflammatory cells in the EM group. After HES treatment, MAPK expression was mainly negative in cells of uterine tissue in the EM+QG+HES group. Ultrastructurally, in the EM group, organelles were disrupted and dilated and degenerated after EM induction. QG and HES treatment improved cellular organelles. Conclusion: Local vaginal applications can be an alternative treatment method in the endometriosis model via QG+HES treatment promoting cell proliferation and angiogenesis and preventing cell death. Full article
(This article belongs to the Special Issue Natural Products in the Antioxidant Drug Discovery Process)
Show Figures

Figure 1

Article
Molluscicidal and Cercaricidal Effects of Myrciaria floribunda Essential Oil Nanoemulsion
Molecules 2023, 28(16), 5944; https://doi.org/10.3390/molecules28165944 (registering DOI) - 08 Aug 2023
Viewed by 106
Abstract
Schistosomiasis is a tropical disease transmitted in an aqueous environment by cercariae from the Schistosoma genus. This disease affects 200 million people living in risk areas around the world. The control of schistosomiasis is realized by chemotherapy, wastewater sanitation, health education, and mollusk [...] Read more.
Schistosomiasis is a tropical disease transmitted in an aqueous environment by cercariae from the Schistosoma genus. This disease affects 200 million people living in risk areas around the world. The control of schistosomiasis is realized by chemotherapy, wastewater sanitation, health education, and mollusk control using molluscicidal agents. This work evaluates the effects of a nanoemulsion containing essential oil from Myrciaria floribunda leaves as a molluscicidal and cercaricidal agent against Biomphalaria glabrata mollusks and Schistosoma mansoni cercariae. The Myrciaria floribunda essential oil from leaves showed nerolidol, β-selinene, 1,8 cineol, and zonarene as major constituents. The formulation study suggested the F3 formulation as the most promising nanoemulsion with polysorbate 20 and sorbitan monooleate 80 (4:1) with 5% (w/w) essential oil as it showed a smaller droplet size of approximately 100 nm with a PDI lower than 0.3 and prominent bluish reflection. Furthermore, this nanoemulsion showed stability after 200 days under refrigeration. The Myrciaria floribunda nanoemulsion showed LC50 values of 48.11 µg/mL, 29.66 µg/mL, and 47.02 µg/mL in Biomphalaria glabrata embryos, juveniles, and adult mollusks, respectively, after 48 h and 83.88 µg/mL for Schistosoma mansoni cercariae after 2 h. In addition, a survival of 80% was observed in Danio rerio, and the in silico toxicity assay showed lower overall human toxicity potential to the major compounds in the essential oil compared to the reference molluscicide niclosamide. These results suggest that the nanoemulsion of Myrciaria floribunda leaves may be a promising alternative for schistosomiasis control. Full article
(This article belongs to the Special Issue Chemistry of Phytocolloids)
Show Figures

Graphical abstract

Back to TopTop