Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,018)

Search Parameters:
Journal = Geosciences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Paleogeographic and Tectonic Evolution of the Earliest Wedge-Top Basin in the Southern Apennines: New Insights from the Paleocurrent Analysis of the Cilento Group Deposits (Southern Italy)
Geosciences 2023, 13(8), 238; https://doi.org/10.3390/geosciences13080238 - 08 Aug 2023
Viewed by 92
Abstract
Our research focuses on the reconstruction of turbidity paleocurrents of the Cilento Group in the Cilento area (southern Apennines, Italy). These deposits were formed in the wedge-top basin above the oceanic Ligurian Accretionary Complex, the early orogenic wedge of the southern Apennines. The [...] Read more.
Our research focuses on the reconstruction of turbidity paleocurrents of the Cilento Group in the Cilento area (southern Apennines, Italy). These deposits were formed in the wedge-top basin above the oceanic Ligurian Accretionary Complex, the early orogenic wedge of the southern Apennines. The Cilento Group succession, whose age ranges between the uppermost Burdigalian and lowermost Tortonian, consists of a thick pile of sandstones, conglomerates, marls and pelites grouped in two formations (Pollica and San Mauro Fms). We retrieved information on the turbidity current directions through sedimentary features such as flute and groove casts, flame structures and ripple marks. The aim of this study is to shed light on the early tectonic evolution of the southern Apennines by reconstructing the geometry of this basin, the source areas that fed it and the paleogeography of the central Mediterranean area in the Miocene. We analyzed 74 sites in both formations and collected 338 measurements of paleocurrent indicators. Because the succession was affected by severe thrusting and folding, every paleocurrent measurement was restored, reinstating the bedding in the horizontal attitude. Results indicate a complex pattern of turbidity current flow directions consistent with a basin model fed by a spectrum of sources, including recycled clasts from the Ligurian Accretionary Complex, Calabria–Peloritani Terrane and the Apennine Platform units and volcaniclastics from the synorogenic volcanoes located in the Sardinia block. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

Correction
Correction: Hoffmann-Abdi et al. Short-Term Meteorological and Environmental Signals Recorded in a Firn Core from a High-Accumulation Site on Plateau Laclavere, Antarctic Peninsula. Geosciences 2021, 11, 428
Geosciences 2023, 13(8), 237; https://doi.org/10.3390/geosciences13080237 - 08 Aug 2023
Viewed by 31
Abstract
The authors would like to make the following corrections to the published article [...] Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

Communication
Subduction of Submarine Arc Volcanoes Beneath the Solomon Islands Arc
Geosciences 2023, 13(8), 236; https://doi.org/10.3390/geosciences13080236 - 08 Aug 2023
Viewed by 95
Abstract
In the Solomon Islands, arc magmas are erupting on the subducting Australia Plate. These island (Simbo) and submarine arc volcanoes (Kana Keoki, Coleman and Pavuvu) are about to be recycled by rapid subduction. We identify eight of their former equivalents beneath the forearc [...] Read more.
In the Solomon Islands, arc magmas are erupting on the subducting Australia Plate. These island (Simbo) and submarine arc volcanoes (Kana Keoki, Coleman and Pavuvu) are about to be recycled by rapid subduction. We identify eight of their former equivalents beneath the forearc by the morphologies and deformation structures that are characteristic of seamount subduction. Tsunamigenic earthquakes recently nucleated just ahead of two of the subducting seamounts. A third (Pavuvu), that has indented the subduction front and uplifted the lower forearc, is associated with a historic earthquake gap. It is positioned such that a rupture there has the potential for tsunami waves to impact the capital, Honiara. Full article
(This article belongs to the Special Issue Present and Past Submarine Volcanic Activity II)
Show Figures

Figure 1

Article
Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA)
Geosciences 2023, 13(8), 235; https://doi.org/10.3390/geosciences13080235 - 08 Aug 2023
Viewed by 121
Abstract
Many regions of the United States contain manganese deposits economically valuable in New England, Appalachian, and Piedmont regions in the Eastern United States, in Northern Arkansas, and, to a small extent, in Central–Western California. Mn oxide/hydroxide (commonly referred to as Mn oxide minerals) [...] Read more.
Many regions of the United States contain manganese deposits economically valuable in New England, Appalachian, and Piedmont regions in the Eastern United States, in Northern Arkansas, and, to a small extent, in Central–Western California. Mn oxide/hydroxide (commonly referred to as Mn oxide minerals) are found in a wide variety of geological settings and occur as fine-grained aggregates, veins, marine and freshwater nodules and concretions, crusts, dendrites, and coatings on rock surfaces (e.g., desert varnish). How manganese oxides form and what mechanisms determine which oxides are likely to form are limited and still debated. This paper focuses on Mn oxides collected at the southern bound of the abandoned open-pit site called Crimora Mine (Augusta County, Virginia). This study uses mineralogical and chemical features to shed light on the origin of manganese deposits in Crimora along the western foot of the Blue Ridge in South–West Virginia. We report the first detailed study on the genesis of the Crimora manganese deposit conducted since the mine was closed in the 1950s. Crimora Mine sample is dark black fine- to medium-grained round and oblong nodules coated with a fine-grained intermix of yellowish earthy limonite, clays, and quartz. Scanning electron microscopy (SEM) revealed that the Crimora Mn-oxides exhibit concentric layering, breccia-like matrices, and veins. X-ray powder diffraction (XRPD) identified the set of Mn minerals as hollandite and birnessite. The concentration and range of dissolved chemical species in freshwater, seawater, and hydrothermal depositional fluids impart a geochemical signature to the Mn-oxides, providing a diagnostic tool to shed light on their genetic origin. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the Crimora manganese oxides shows Mn, Fe, and Ti, as well as trace elements such as Co, Ba, Y, Zn, Cr, Ni, Tl, La, V, and Li. A bivariate analysis based on the geochemical correlation of Mn and other common substituting cations (e.g., Fe, Co, Ti) shows a mixed genesis in different environments with varying biological and sedimentary supergene (freshwater and marine) conditions. These data suggest that the Mn-rich deposit in Crimora, VA, was formed in a continental margin environment of surficial deposits and reprecipitated in mixed biogenic and supergene conditions. Full article
Show Figures

Figure 1

Article
Structural and Tectonic Evolution of the Porgera Gold Mine; Highlands of Papua New Guinea
Geosciences 2023, 13(8), 234; https://doi.org/10.3390/geosciences13080234 - 07 Aug 2023
Viewed by 172
Abstract
The Porgera Transfer Zone (PTZ) is a major crustal and probably lithospheric structure across Papua New Guinea recording >50 km offset of ophiolites and very different patterns of geology and topography on either side. In the Late Jurassic, the PTZ probably separated oceanic [...] Read more.
The Porgera Transfer Zone (PTZ) is a major crustal and probably lithospheric structure across Papua New Guinea recording >50 km offset of ophiolites and very different patterns of geology and topography on either side. In the Late Jurassic, the PTZ probably separated oceanic crust and thick Jurassic Om shales to the west from a continental promontory to the east. During the Late Miocene to Recent orogenesis, the differential compression of these features is interpreted to have created a dextral strike slip fault across the fold belt with pull-apart basins at sites of fault relays. This facilitated the ascent of intrusions and mineralization at Porgera. The acquisition of high-resolution LIDAR data semi-regionally around the Porgera Gold Mine greatly improved interpretation of the regional geology and particularly the recognition of normal faults. By correlating with sparse dip data and paly-dated samples, it was possible to create stratigraphic sections and interpret structural cross-sections using the LIDAR data. As the area involved strike–slip offsets, it was important to construct sections in multiple orientations in order to interpret the 3D geology. Both dips and fault orientation could be directly inferred from the LIDAR data such that sections could be constructed orthogonally to them. A balanced, restored and forward-modelled cross-section illustrates the interaction between thrust faults and normal faults during compression and that it was synchronous with the development of a pull-apart basin. A semi-regional 3D geological model, which was developed mainly from the LIDAR data, supports the hypothesis of inversion of the thick Om beds to the west before or during compression of the continental promontory to the east resulting in dextral strike–slip offsets across the PTZ. A jog or relay in the faults occurred and caused a pull-apart collapse basin to develop in the area of the Porgera mine. Similar pull-apart graben, or negative flower structures, were detected nearby and may be areas for future exploration. Full article
Show Figures

Figure 1

Article
FEM Modelling of Thin Weak Layers in Slope Stability Analysis
Geosciences 2023, 13(8), 233; https://doi.org/10.3390/geosciences13080233 - 06 Aug 2023
Viewed by 189
Abstract
Modelling the presence and the effect of a thin weak layer of soil or rock in a slope stability analysis performed through the finite element method (FEM) presents several problems of purely numerical nature. This paper deals with a parametric analysis of three [...] Read more.
Modelling the presence and the effect of a thin weak layer of soil or rock in a slope stability analysis performed through the finite element method (FEM) presents several problems of purely numerical nature. This paper deals with a parametric analysis of three different 2D numerical case studies (both ideal and real) of unstable or potentially unstable slopes containing a thin soft band (or weak layer). The FEM software used is RS2 (Rocscience®). The aim is investigating the influence of some geometrical and numerical characteristics of the soft bands in the stability analyses. The Mohr–Coulomb elastic-perfectly plastic constitutive model for all the involved materials was assumed, and the mechanical parameters were kept constant. Instead, other fundamental parameters of the weak layer, such as the type of mesh elements, the mesh density, and the geometry, in terms of both thickness and outcrop shape, were changed, and results in terms of the critical Strength Reduction Factor (SRF) were compared. The main outcomes of this study represent practical suggestions on some numerical and technical aspects to users of FEM slope stability analyses, in order to obtain a precautionary assessment of slope stability. Full article
(This article belongs to the Special Issue Advanced Numerical Modelling and Analysis in Geotechnical Engineering)
Show Figures

Figure 1

Article
Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA
Geosciences 2023, 13(8), 232; https://doi.org/10.3390/geosciences13080232 - 02 Aug 2023
Viewed by 298
Abstract
The spatial variations in Quaternary sediments on the inner continental shelf are produced by the progression of depositional environments during the latest sea-level rise, and this sedimentary architecture plays a fundamental role in controlling groundwater discharge. However, coincident seismic mapping, sediment cores, and [...] Read more.
The spatial variations in Quaternary sediments on the inner continental shelf are produced by the progression of depositional environments during the latest sea-level rise, and this sedimentary architecture plays a fundamental role in controlling groundwater discharge. However, coincident seismic mapping, sediment cores, and hydrological studies are rare. Here, we combine high-resolution, 0.5–10 kHz, high-frequency seismic profiles with sediment cores to examine the nature of the sediment deposits, including paleochannels, where submarine groundwater discharge has also been studied in a 150 km2 area of the inner shelf north of Charleston, South Carolina. We used high-frequency seismic reflection to interpret seismic facies boundaries, including 16 paleochannel crossings, to 20 km offshore. From 13 vibracores taken at the intersections of the seismic lines, we defined seven lithofacies representative of specific depositional environments. The paleochannels that we cored contain thick layers of structureless mud sometimes interbedded with silt, and mud is common in several of the nearshore cores. Our results indicate that paleochannels are often mud-lined or filled in this area and were most likely former estuarine channels. Neither the paleochannels nor a mud layer were found farther than 11 km off the present shoreline. This offshore distance coincides with the strongest pulses of groundwater discharge, emerging just beyond the paleochannels. This suggests that the muddy paleochannel system acts as a confining layer for submarine groundwater flow. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Article
Fluid-Related Features in the Offshore Sector of the Sciacca Geothermal Field (SW Sicily): The Role of the Lithospheric Sciacca Fault System
Geosciences 2023, 13(8), 231; https://doi.org/10.3390/geosciences13080231 - 31 Jul 2023
Viewed by 287
Abstract
The Sciacca basin extends in the southwestern part of Sicily and hosts an important geothermal field (the Sciacca Geothermal Field) characterized by hot springs containing mantle gasses. Newly acquired high-resolution seismic profiles (Boomer data) integrated with a multichannel seismic reflection profile in close [...] Read more.
The Sciacca basin extends in the southwestern part of Sicily and hosts an important geothermal field (the Sciacca Geothermal Field) characterized by hot springs containing mantle gasses. Newly acquired high-resolution seismic profiles (Boomer data) integrated with a multichannel seismic reflection profile in close proximity to the Sciacca Geothermal Field have documented the presence of numerous active and shallow fluid-related features (pipes, bright spots, buried and outcropping mud volcanoes, zones of acoustic blanking, and seafloor fluid seeps) in the nearshore sector between Capo San Marco and Sciacca (NW Sicilian Channel) and revealed its deep tectonic structure. The Sciacca Geothermal Field and the diffuse submarine fluid-related features probably form a single onshore–offshore field covering an area of at least 70 km2. This field has developed in a tectonically active zone dominated by a left-lateral transpressive regime associated with the lithospheric, NNE-striking Sciacca Fault System. This structure probably favored the rising of magma and fluids from the mantle in the offshore area, leading to the formation of a geothermal resource hosted in the Triassic carbonate succession that outcrops onshore at Monte San Calogero. This field has been active since the lower Pleistocene, when fluid emissions were likely greater than today and were associated with greater tectonic activity along the Sciacca Fault System. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

Article
Ancient Aeolian Reservoirs of the East Siberia Craton
Geosciences 2023, 13(8), 230; https://doi.org/10.3390/geosciences13080230 - 29 Jul 2023
Viewed by 230
Abstract
Fine-grained strata deposited on the Eastern Siberian craton are predominantly considered to mainly consist of Neoproterozoic sandstones. Clastic rocks near the unconformity border of the Ediacaran and the Riphean are represented by sandstone and siltstone layers with thicknesses of several tens of meters, [...] Read more.
Fine-grained strata deposited on the Eastern Siberian craton are predominantly considered to mainly consist of Neoproterozoic sandstones. Clastic rocks near the unconformity border of the Ediacaran and the Riphean are represented by sandstone and siltstone layers with thicknesses of several tens of meters, belonging to the Nepa, Tira, and Byuk horizons in the Nepa–Botuoba region. These Neoproterozoic sandstones have features characteristic of aeolianites formed under the action of high wind velocity in the Ediacaran period. Sandstone samples near the Riphean–Ediacaran boundary were collected from five deep wells and characterized for granulometry and mineral composition using optical microscopy, XRD, SEM, and ICP-MS techniques. These sandstones have a high proportion of quartz (60–98%) with minor amounts of feldspars, carbonate, and sulfate cements. Thin sections of the sandy rocks feature bimodal distributions of the grains throughout many sections, with large well-rounded quartz grains being several orders of magnitude greater than the silt matrix grains. The monomineralic quartz rocks have an overgrowth of quartz grains. These rocks can be petroleum reservoirs with good porosity and permeability, but in most of the studied intervals, a high content of anhydrite and dolomite interstitial cement significantly reduces both. The porosity of the rocks is low, while the permeability is very low, which may be associated with a significant amount of clay and cement material. Aeolianites normally contain large amounts of bimodal quartz (due to its high stability and resistance to weathering) and possess the presence of heavy minerals. Full article
Show Figures

Figure 1

Article
The Relationship between Bacterial Sulfur Cycling and Ca/Mg Carbonate Precipitation—Old Tales and New Insights from Lagoa Vermelha and Brejo do Espinho, Brazil
Geosciences 2023, 13(8), 229; https://doi.org/10.3390/geosciences13080229 - 28 Jul 2023
Viewed by 225
Abstract
Over the few past decades, the concept of microbial sulfur cycling catalyzing the precipitation of CaMg (CO3)2 at low temperatures (<40 °C) has been studied intensely. In this respect, two hypersaline lagoons, Lagoa Vermelha and Brejo do Espinho, in Brazil, [...] Read more.
Over the few past decades, the concept of microbial sulfur cycling catalyzing the precipitation of CaMg (CO3)2 at low temperatures (<40 °C) has been studied intensely. In this respect, two hypersaline lagoons, Lagoa Vermelha and Brejo do Espinho, in Brazil, have been the subject of numerous studies investigating sedimentary Ca/Mg carbonate formation. Here, we present the sulfur and oxygen isotopic compositions of dissolved sulfate from surface water, as well as sulfate and sulfide from pore-water (δ34SSO4, δ18OSO4, and δ34SH2S), the sulfur isotopic composition of sedimentary pyrite (δ34SCRS), and sulfur and oxygen isotopic compositions of carbonate-associated sulfate (CAS, δ34SCAS and δ18OCAS). The pore-water profiles at Lagoa Vermelha indicate ongoing bacterial sulfate reduction by increasing δ34SSO4, δ18OSO4 and δ34SCRS values downcore. At Brejo do Espinho, the pore-water profiles displayed no depth-dependent isotope trends; the Ca/Mg ratio was, on average, lower, and the δ18OSO4 values in both surface and pore-water were strongly enriched in 18O. There was an overall mismatch between δ34SSO4 and the significantly higher δ34SCAS values. A negative correlation was observed between the Ca/Mg ratio and higher δ34SCAS values. The results show that the size difference between the two lagoons induces differences in the intensity of evaporation, which leads to the increased secretion of extrapolymeric substances (EPSs) by microbes in the smaller Brejo do Espinho. EPS provides the microenvironment where Ca/Mg carbonate can nucleate and preserve increased δ34SCAS values. Apart from EPS, increased sulfur oxidation is proposed to be a second factor causing relative enrichment of Ca/Mg carbonates at Brejo do Espinho. Our results emphasize the role of evaporative processes on Ca/Mg carbonate formation, and indicate that the respective δ34SCAS values reflect microenvironments rather than preserving an open marine δ34SSO4 signature. Full article
(This article belongs to the Special Issue Advances in Carbonate Diagenesis)
Show Figures

Figure 1

Article
First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice
Geosciences 2023, 13(8), 228; https://doi.org/10.3390/geosciences13080228 - 28 Jul 2023
Viewed by 213
Abstract
This paper presents the results of an acoustic survey carried out from the fast ice in the shallow waters of the East Siberian Arctic Shelf (ESAS) using a single beam echosounder. The aim of this paper is to demonstrate an improved approach to [...] Read more.
This paper presents the results of an acoustic survey carried out from the fast ice in the shallow waters of the East Siberian Arctic Shelf (ESAS) using a single beam echosounder. The aim of this paper is to demonstrate an improved approach to study seafloor seepages in the Arctic coastal zone with an echosounder calibrated on site. During wintertime field observations of natural rising gas bubbles, we recorded three periods of their increased activity with a total of 63 short-term ejections of bubbles from the seabed. This study presents quantitative estimates of the methane (CH4) flux obtained in wintertime at two levels of the water column: (1) at the bottom/water interface and (2) at the water/sea ice interface. In winter, the flux of CH4 transported by rising bubbles to the bottom water in the shallow part of the ESAS was estimated at ~19 g·m−2 per day, while the flux reaching the water/sea ice interface was calculated as ~15 g·m−2 per day taking into account the diffusion of CH4 in the surrounding water and the enrichment of rising bubbles with nitrogen and oxygen. We suggest that this bubble-transported CH4 flux reaching the water /sea ice interface can be emitted into the atmosphere through numerous ice trenches, leads, and polynyas. This CH4 ebullition value detected at the water/sea ice interface is in the mid high range of CH4 ebullition value estimated for the entire ESAS, and two orders higher than the upper range of CH4 ebullition from the northern thermocarst lakes, which are considered as a significant source to the atmospheric methane budget. Full article
(This article belongs to the Special Issue Permafrost and Gas Hydrate Response to Ground Temperature Rising)
Show Figures

Figure 1

Article
A Lacustrine Record for the Cretaceous–Paleogene Boundary—Yacoraite Fm., (Northwest Argentina)
Geosciences 2023, 13(8), 227; https://doi.org/10.3390/geosciences13080227 - 27 Jul 2023
Viewed by 285
Abstract
The Yacoraite Fm. (Salta rift basin, Argentina) consists of a mixed carbonate–siliciclastic lacustrine succession, interbedded with volcanic ash layers and organised in four third-order stratigraphic sequences. It is one of the few sites in South America that encompass the Cretaceous–Paleogene (K–Pg) transition, the [...] Read more.
The Yacoraite Fm. (Salta rift basin, Argentina) consists of a mixed carbonate–siliciclastic lacustrine succession, interbedded with volcanic ash layers and organised in four third-order stratigraphic sequences. It is one of the few sites in South America that encompass the Cretaceous–Paleogene (K–Pg) transition, the position of which remains debated. Here, samples were collected along a depocentral stratigraphic section that was previously dated by zircon and carbonate U-Pb geochronology. The consistency between zircon and carbonate U-Pb ages, together with an accurate petrographic analysis, allowed the selection of carbonates potentially preserving the original geochemical signature. Accordingly, C-O stable isotopes were analysed from microbialites, oncoids, ooids and lacustrine cements. The available depositional age model from zircon geochronology defined the stratigraphic interval, potentially including the K–Pg transition. Within this interval, carbonates provided negative δ13C values consistent with the negative C anomaly recorded in various K–Pg sites elsewhere. Additionally, spherical particles resembling spherulites related to meteorite impacts were found in two samples. Accordingly, the K–Pg transition could be placed at the top of the second stratigraphic sequence. These findings encourage further investigation of the Yacoraite Fm. to gain insights into the response of South American terrestrial settings to the K–Pg palaeoenvironmental crisis. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

Article
The Coastal Areas of the Bay of Naples: The Sedimentary Dynamics and Geological Evolution of the Naples Canyons
Geosciences 2023, 13(8), 226; https://doi.org/10.3390/geosciences13080226 - 27 Jul 2023
Viewed by 200
Abstract
The sedimentary dynamics and geological evolution of the Naples canyons during the Late Quaternary have been studied based on sedimentological and seismo-stratigraphic data. Several factors, including the sedimentary environments, tectonic setting, and volcanic eruptions, have controlled the geological evolution of the coastal and [...] Read more.
The sedimentary dynamics and geological evolution of the Naples canyons during the Late Quaternary have been studied based on sedimentological and seismo-stratigraphic data. Several factors, including the sedimentary environments, tectonic setting, and volcanic eruptions, have controlled the geological evolution of the coastal and marine areas of the Bay of Naples. The main data and methods include the sedimentological data analysis, the seismo-stratigraphic techniques applied in the geological interpretation of seismic profiles, and the integrated analysis of core data that were previously published. The formation of the Dohrn canyon is controlled by fluvial processes, active in correspondence with the palaeo-Schiazzano River system and by the main eruptive events involving the submarine portion of Naples Bay, including the Campanian Ignimbrite (CI; 39 ky B.P.) and the Neapolitan Yellow Tuff (NYT; 15 ky B.P.). The formation of the Magnaghi canyon is controlled by erosional processes on the continental slope of Procida Island, which was active during the last eruptive phases of the island (Solchiaro Formation; 18 ky B.P.), triggering high rates of volcaniclastic supply. Full article
(This article belongs to the Special Issue The Dynamics of Sedimentary Processes in Coastal Areas)
Show Figures

Figure 1

Article
U-Pb Zircon Geochronology of Detrital and Ash Fall Deposits of the Southern Paraná Basin: A Contribution for Provenance, Tectonic Evolution, and the Paleogeography of the SW Gondwana
Geosciences 2023, 13(8), 225; https://doi.org/10.3390/geosciences13080225 - 27 Jul 2023
Viewed by 278
Abstract
Zircon U-Pb geochronology was applied to investigate the provenance, depositional ages, and paleogeography of the southwestern Gondwana in detrital and ash fall sediments from Carboniferous to Jurassic succession of the southern Paraná Basin. Four detrital age populations suggest provenance from local and distal [...] Read more.
Zircon U-Pb geochronology was applied to investigate the provenance, depositional ages, and paleogeography of the southwestern Gondwana in detrital and ash fall sediments from Carboniferous to Jurassic succession of the southern Paraná Basin. Four detrital age populations suggest provenance from local and distal sources located to the south, southeast, and southwest: (i) Archean to Paleoproterozoic zircons from the Rio de La Plata Craton, Nico Peres and Taquarembó terranes; (ii) Grenvillian zircons from the basement of the Gondwanides and Namaqua–Natal belts; (iii) Neoproterozoic grains from the Don Feliciano Belt; and (iv) Phanerozoic populations from Paleozoic orogenic belts and related foreland systems in Argentina, as well as eroded units of the Paraná Basin. The paleogeographic reconstruction indicates an evolution in three distinct stages: (1) a gulf open to the Panthalassa Ocean during the Carboniferous; (2) an epicontinental sea with the rise of the Gondwanides Orogeny during the Permian; and (3) continental deposits controlled by an intra-plate graben system during the Triassic. Permian–Triassic volcanogenic zircons provide constrained maximum depositional ages and attested persistent volcanism, related to the Choiyoi magmatism and effects of the climate change episodes. During the Triassic, the extensional graben system recorded the uplift of the basement through regional northwest and northeast fault systems, and the recycling of Permian zircons, modifying source-to-sink relationships. Full article
(This article belongs to the Collection Detrital Minerals: Their Application in Palaeo-Reconstruction)
Show Figures

Figure 1

Article
Petrographic and Geotechnical Features of Dir Volcanics as Dimension Stone, Upper Dir, North Pakistan
Geosciences 2023, 13(8), 224; https://doi.org/10.3390/geosciences13080224 - 27 Jul 2023
Viewed by 305
Abstract
The utilization of dimension stone in construction has been prevalent since ancient times; however, its application in modern construction has gained significant attention over the last few decades. This research aimed to assess the physical and strength properties of volcanic rocks from the [...] Read more.
The utilization of dimension stone in construction has been prevalent since ancient times; however, its application in modern construction has gained significant attention over the last few decades. This research aimed to assess the physical and strength properties of volcanic rocks from the Kohistan Island Arc for their potential use as dimension stone. Five types of andesites (MMA, PMA-1, PMA-2, CMA, and FMA) and two types of agglomerates (AG-1 and AG-2) were identified based on their composition, color, and texture. The samples were characterized in terms of their petrography (compositional and textural), physical properties (specific gravity, water absorption, and porosity), and strength properties (unconfined compressive strength and unconfined tensile strength). Two non-destructive tests (ultrasonic pulse velocity test and Schmidt hammer) were conducted, and the degree of polishing was evaluated. Correlation analyses were carried out to establish possible relationships among these parameters. The presence of chlorite, epidote, sericite, and recrystallized quartz indicated signs of low-grade metamorphism in andesites. The study revealed that feldspar, amphibole, and quartz imparted good physical and strength properties to samples MMA, CMA, FMA, AG1, and AG2. On the other hand, PMA-1 and PMA-2 exhibited reduced physical and strength properties due to the abundance of alteration products like chlorite, sericite, and epidote. The unconfined compressive strength exhibited a strong correlation with ultrasonic pulse velocity, skeletal density, porosity, and water absorption. Weathering grade considerably affected the values of ultrasonic pulse velocity and Schmidt hammer. Consequently, samples PMA-1 and PMA-2 are not recommended for load-bearing masonry units and outdoor applications due to their high water absorption and low strength values. On the other hand, samples FMA and MMA exhibited excellent properties like high strength and good polishing, indicating their potential use as decorative and facing stones, external pavement, ashlar, rubbles, and load-bearing masonry units. Full article
Show Figures

Figure 1

Back to TopTop