Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Journal = Organoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Review
Organoid Models and Next-Generation Sequencing for Bone Marrow and Related Disorders
Organoids 2023, 2(3), 123-139; https://doi.org/10.3390/organoids2030010 - 01 Jul 2023
Viewed by 795
Abstract
Challenges to the musculoskeletal system negatively impact the quality of life of people suffering from them, leading to pain, a decline in mobility, genetic alterations, and potential disorders. The bone marrow (BM) forms an integral part of the musculoskeletal system responsible for erythropoiesis [...] Read more.
Challenges to the musculoskeletal system negatively impact the quality of life of people suffering from them, leading to pain, a decline in mobility, genetic alterations, and potential disorders. The bone marrow (BM) forms an integral part of the musculoskeletal system responsible for erythropoiesis and optimal survival of the various immune and stem cells within the BM. However, due to its dynamic and complex three-dimensional (3D) structure, replicating the BM physiologically in traditional two-dimensional (2D) cell culture settings is often challenging, giving rise to the need for 3D in vitro models to better dissect the BM and its regeneration. Several researchers globally have been investigating various approaches to define an appropriate 3D model for their research. Organoids are novel preclinical models that provide a 3D platform for several tissues and have been analysed using next-generation sequencing (NGS) to identify new molecular pathways at the genetic level. The 3D in vitro models and organoids are increasingly considered important platforms for precision medicine. This review outlines the current knowledge of organoid and 3D in vitro models for the BM. We also discuss different types of 3D models which may be more adaptable for the BM. Finally, we critically review the NGS techniques used for such models and the future combination of these techniques. Full article
Show Figures

Figure 1

Editorial
Organoids Are Us
Organoids 2023, 2(2), 120-122; https://doi.org/10.3390/organoids2020009 - 16 Jun 2023
Viewed by 639
Abstract
“Organoids Are Us” is an annual one-day symposium organised to highlight the advances in science and medicine that are the direct result of organoid technology [...] Full article
Article
A Microwell Device for the Efficient Generation of Arrays of Microtissues and Humanized Bone Marrow Micro-Ossicles
Organoids 2023, 2(2), 102-119; https://doi.org/10.3390/organoids2020008 - 01 Jun 2023
Viewed by 677
Abstract
(1) Background: There are no high-throughput microtissue platforms for generating bone marrow micro-ossicles. Herein, we describe a method for the assembly of arrays of microtissues from bone marrow stromal cells (BMSC) in vitro and their maturation into bone marrow micro-ossicles in vivo. (2) [...] Read more.
(1) Background: There are no high-throughput microtissue platforms for generating bone marrow micro-ossicles. Herein, we describe a method for the assembly of arrays of microtissues from bone marrow stromal cells (BMSC) in vitro and their maturation into bone marrow micro-ossicles in vivo. (2) Methods: Discs with arrays of 50 microwells were used to assemble microtissues from 3 × 105 BMSCs each on a nylon mesh carrier. Microtissues were cultured in chondrogenic induction medium followed by hypertrophic medium in an attempt to drive endochondral ossification, and then they were implanted in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice, where they were remodeled into bone marrow micro-ossicles. Mice were transplanted with 105 human umbilical cord blood CD34+ cells. (3) Results: Micro-ossicles contained more human CD45+ cells, but fewer human CD34+ progenitor cells than mouse marrow. Human hematopoietic progenitor cells cycle rapidly at non-physiological rates in mouse marrow, and reduced CD34+ cell content in micro-ossicles is consistent with the notion that the humanized niche better controls progenitor cell cycling. (4) Conclusions: Assembling microtissues in microwells, linked by a nylon membrane carrier, provides an elegant method to manufacture and handle arrays of microtissues with bone organ-like properties. More generally, this approach and platform could aid bridging the gap between in vitro microtissue manipulation and in vivo microtissue implantation. Full article
(This article belongs to the Special Issue Organoids and Advanced 3D Models in Biomedical Research)
Show Figures

Figure 1

Article
Development of Matrix-Embedded Bovine Tracheal Organoids to Study the Innate Immune Response against Bovine Respiratory Disease
Organoids 2023, 2(2), 82-101; https://doi.org/10.3390/organoids2020007 - 11 May 2023
Cited by 1 | Viewed by 1117
Abstract
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle. Bovine herpesvirus-1 (BHV-1) is one of the main culprits of BRD; however, research on BHV-1 is hampered by the lack of suitable models for infection and drug testing. [...] Read more.
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle. Bovine herpesvirus-1 (BHV-1) is one of the main culprits of BRD; however, research on BHV-1 is hampered by the lack of suitable models for infection and drug testing. In this study, we established a novel bovine tracheal organoid culture grown in a basement membrane extract type 2 (BME2) matrix and compared it with the air–liquid interface (ALI) culture system. After differentiation, the matrix-embedded organoids developed beating cilia and demonstrated a transcriptomic profile similar to the ALI culture system. The matrix-embedded organoids were also highly susceptible to BHV-1 infection and immune stimulation by Pam2Cys, an immunomodulator, which resulted in robust cytokine production and tracheal antimicrobial peptide mRNA upregulation. However, treatment of bovine tracheal organoid cultures with Pam2Cys was not sufficient to inhibit viral infection or replication, suggesting a role of the non-epithelial cellular microenvironment in vivo. Full article
Show Figures

Graphical abstract

Editorial
“Organoids”: Insights from the First Issues
Organoids 2023, 2(2), 79-81; https://doi.org/10.3390/organoids2020006 - 07 Apr 2023
Viewed by 775
Abstract
Organoids are taking the scientific world by storm, revolutionizing the ways in which we study complex biological systems [...] Full article
Article
Decellularization of Mouse Kidneys to Generate an Extracellular Matrix Gel for Human Induced Pluripotent Stem Cell Derived Renal Organoids
Organoids 2023, 2(1), 66-78; https://doi.org/10.3390/organoids2010005 - 22 Mar 2023
Cited by 1 | Viewed by 1217
Abstract
Chronic Kidney Disease (CKD) is a major cause of morbidity and mortality characterized by progressive renal fibrosis, and in extreme cases, renal failure. Human CKD models that replicate the biological complexity of the kidney and CKD are lacking and will be invaluable in [...] Read more.
Chronic Kidney Disease (CKD) is a major cause of morbidity and mortality characterized by progressive renal fibrosis, and in extreme cases, renal failure. Human CKD models that replicate the biological complexity of the kidney and CKD are lacking and will be invaluable in identifying drugs to revert and/or prevent fibrosis. To address this unmet need, we developed 3D renal organoids where human induced pluripotent stem cells (hiPSCs) were differentiated to renal progenitors within a renal extracellular matrix (rECM) gel, based on the premise that an rECM could recreate the renal niche to facilitate hiPSC-derived renal progenitor generation. We used mouse kidneys as a source of rECM and identified that superior detergent-mediated decellularization of mouse kidneys was achieved with a combination of 0.5% w/v Sodium Dodecyl Sulphate and 1% v/v Triton-X and mechanical agitation for 60 h. HiPSCs that underwent specification to become metanephric mesenchyme (MM) were subsequently cultured within the rECM gel and, notably, mesenchymal to epithelial transition (MET) was observed, as judged by expression of nephron markers K-cadherin, Nephrin and WT1. These data demonstrate a role for rECM gel in developing human renal organoids from hiPSCs, which will aid the further development of a human disease model for renal fibrosis. Full article
Show Figures

Figure 1

Perspective
Human Brain Organoids and Consciousness: Moral Claims and Epistemic Uncertainty
Organoids 2023, 2(1), 50-65; https://doi.org/10.3390/organoids2010004 - 07 Feb 2023
Cited by 1 | Viewed by 2548
Abstract
Human brain organoids provide a remarkable opportunity to model prenatal human brain biology in vitro by recapitulating features of in utero molecular, cellular and systems biology. An ethical concern peculiar to human brain organoids is whether they are or could become capable of [...] Read more.
Human brain organoids provide a remarkable opportunity to model prenatal human brain biology in vitro by recapitulating features of in utero molecular, cellular and systems biology. An ethical concern peculiar to human brain organoids is whether they are or could become capable of supporting sentience through the experience of pain or pleasure and/or consciousness, including higher cognitive abilities such as self-awareness. Identifying the presence of these traits is complicated by several factors, beginning with consciousness—which is a highly contested concept among neuroscientists, cognitive scientists, and philosophers and so there is no agreed definition. Secondly, given human brain organoids are disembodied, there is no practical way to identify evidence of consciousness as we might in humans or animals. What would count as evidence of organoid consciousness is an emerging area of research. To address concerns about consciousness and human brain organoids, in this paper we clarify the morally relevant aspects of human consciousness, phenomenal experience and embodied development and explore the empirical basis of consciousness to develop a defensible framework for informed decision-making on the moral significance and utility of brain organoids, which can also guide regulation and future research of these novel biological systems. Full article
(This article belongs to the Special Issue Feature Papers in Organoids)
Show Figures

Graphical abstract

Review
Applications for Colon Organoid Models in Cancer Research
Organoids 2023, 2(1), 37-49; https://doi.org/10.3390/organoids2010003 - 12 Jan 2023
Cited by 3 | Viewed by 3122
Abstract
Organoids are 3D organ-like structures grown from stem cells in vitro that mimic the organ or disease from which they are derived. Due to their stem cell origin, organoids contain a heterogeneous population of cells reflecting the diversity of cell types seen in [...] Read more.
Organoids are 3D organ-like structures grown from stem cells in vitro that mimic the organ or disease from which they are derived. Due to their stem cell origin, organoids contain a heterogeneous population of cells reflecting the diversity of cell types seen in vivo. Similarly, tumour organoids reflect intratumoural heterogeneity in a way that traditional 2D cell culture and cell lines do not, and, therefore, they show greater promise as a more relevant model for effective disease modelling and drug testing. Tumour organoids arise from cancer stem cells, which contribute to many of the greatest challenges to cancer treatment, including therapy resistance, tumour recurrence, and metastasis. In this review, we outline methods for generating colon organoids from patient-derived normal and tumour tissues. Furthermore, we discuss organoid biobanking, applications of organoids in disease modelling, and a range of platforms applicable to high-throughput drug testing, including apical-out/reverse-polarity colon organoids. Full article
Show Figures

Figure 1

Article
Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids
Organoids 2023, 2(1), 20-36; https://doi.org/10.3390/organoids2010002 - 11 Jan 2023
Cited by 2 | Viewed by 2330
Abstract
Human brain organoids present a new paradigm for modeling human brain organogenesis, providing unprecedented insight to the molecular and cellular processes of brain development and maturation. Other potential applications include in vitro models of disease and tissue trauma, as well as three-dimensional (3D) [...] Read more.
Human brain organoids present a new paradigm for modeling human brain organogenesis, providing unprecedented insight to the molecular and cellular processes of brain development and maturation. Other potential applications include in vitro models of disease and tissue trauma, as well as three-dimensional (3D) clinically relevant tissues for pharmaceuticals development and cell or tissue replacement. A key requirement for this emerging technology in both research and medicine is the simple, scalable, and reproducible generation of organoids using reliable, economical, and high-throughput culture platforms. Here we describe such a platform using a defined, clinically compliant, and readily available hydrogel generated from gelatin methacrylate (GelMA). We demonstrate the efficient production of organoids on GelMA from human induced pluripotent stem cells (iPSCs), with scalable production attained using 3D printed GelMA-based multiwell arrays. The differentiation of iPSCs was systematic, rapid, and direct to enable iPSCs to form organoids in their original position following seeding on GelMA, thereby avoiding further cell and organoid disruption. Early neural precursors formed by day 5, neural rosettes and early-stage neurons by day 14, and organoids with cellular and regional heterogeneity, including mature and electrophysiologically active neurons, by day 28. The optimised method provides a simplified and well-defined platform for both research and translation of iPSCs and derivative brain organoids, enabling reliable 3D in vitro modelling and experimentation, as well as the provision of clinically relevant cells and tissues for future therapeutics. Full article
(This article belongs to the Special Issue Feature Papers in Organoids)
Show Figures

Graphical abstract

Article
High-Throughput Live and Fixed Cell Imaging Method to Screen Matrigel-Embedded Organoids
Organoids 2023, 2(1), 1-19; https://doi.org/10.3390/organoids2010001 - 24 Dec 2022
Cited by 1 | Viewed by 2888
Abstract
Technical advances in microscopy and automation have enabled image-based phenotypic screening of spheroids and organoids to become increasingly high throughput and high content at the same time. In particular, matrix-embedded 3D structures can recapitulate many aspects of parent (e.g., patient) tissues. Live-cell imaging [...] Read more.
Technical advances in microscopy and automation have enabled image-based phenotypic screening of spheroids and organoids to become increasingly high throughput and high content at the same time. In particular, matrix-embedded 3D structures can recapitulate many aspects of parent (e.g., patient) tissues. Live-cell imaging of growing structures allows tremendous insight into population heterogeneity during drug treatment. However, screening for targeted markers and more detailed morphological analyses typically require fixation of 3D structures, and standard formaldehyde (FA) incubation conditions can dissolve collagen-based extracellular matrices such as Matrigel. The dislocation and clumping of the spheroids make image-based segmentation very difficult and the tracking of structures from the live cell stage to their fixed cell location virtually impossible. In this method, we present a fixation and staining protocol that is gentle enough to maintain 3D structures exactly in their live-cell location and does not alter their morphology. This opens up analytical strategies that connect the spheroid’s growth kinetics and heterogeneity of treatment responses with the more targeted fixed cell stains. Furthermore, we optimized the automated seeding and imaging of spheroids so that screening and phenotypic characterization can be performed in high-throughput at either low or high magnification and yield the same result, independent of the microscope used. Full article
Show Figures

Graphical abstract

Article
Pancreatic Cancer 3D Cell Line Organoids (CLOs) Maintain the Phenotypic Characteristics of Organoids and Accurately Reflect the Cellular Architecture and Heterogeneity In Vivo
Organoids 2022, 1(2), 168-183; https://doi.org/10.3390/organoids1020013 - 12 Dec 2022
Cited by 1 | Viewed by 2325
Abstract
Pancreatic cancer is a highly lethal disease. Therapeutic resistance to chemotherapy is a major cause of treatment failure and recurrence in pancreatic cancer. Organoids derived from cancer stem cells (CSC) are promising models for the advancement of personalised therapeutic responses to inform clinical [...] Read more.
Pancreatic cancer is a highly lethal disease. Therapeutic resistance to chemotherapy is a major cause of treatment failure and recurrence in pancreatic cancer. Organoids derived from cancer stem cells (CSC) are promising models for the advancement of personalised therapeutic responses to inform clinical decisions. However, scaling-up of 3D organoids for high-throughput screening is time-consuming and costly. Here, we successfully developed organoid-derived cell lines (2.5D) from 3D organoids; the cells were then expanded and recapitulated back into organoids known as cell line organoids (CLOs). The 2.5D lines were cultured long term into 2D established cell lines for downstream comparison analysis. Experimental characterisation of the models revealed that the proliferation of CLOs was slightly faster than that of parental organoids. The therapeutic response to chemotherapeutic agents in 3D CLOs and organoids showed a similar responsive profile. Compared to 3D CLOs and organoids, 2D cell lines tended to be less responsive to all the drugs tested. Stem cell marker expression was higher in either 3D CLOs or organoids compared to 2D cell lines. An in vivo tumorigenicity study found CLOs form tumours at a similar rate to organoids and retain enhanced CSC marker expression, indicating the plasticity of CSCs within the in vivo microenvironment. Full article
(This article belongs to the Topic Human Current and Future Model Systems)
Show Figures

Figure 1

Review
3D Tumor Spheroid and Organoid to Model Tumor Microenvironment for Cancer Immunotherapy
Organoids 2022, 1(2), 149-167; https://doi.org/10.3390/organoids1020012 - 05 Dec 2022
Cited by 9 | Viewed by 4167
Abstract
The intricate microenvironment in which malignant cells reside is essential for the progression of tumor growth. Both the physical and biochemical features of the tumor microenvironment (TME) play a critical role in promoting the differentiation, proliferation, invasion, and metastasis of cancer cells. It [...] Read more.
The intricate microenvironment in which malignant cells reside is essential for the progression of tumor growth. Both the physical and biochemical features of the tumor microenvironment (TME) play a critical role in promoting the differentiation, proliferation, invasion, and metastasis of cancer cells. It is therefore essential to understand how malignant cells interact and communicate with an assortment of supportive tumor-associated cells including macrophages, fibroblasts, endothelial cells, and other immune cells. To study the complex mechanisms behind cancer progression, 3D spheroid and organoid models are widely in favor because they replicate the stromal environment and multicellular structure present within an in vivo tumor. It provides more precise data about the cell–cell interactions, tumor characteristics, drug discovery, and metabolic profile of cancer cells compared to oversimplified 2D systems and unrepresentative animal models. This review provides a description of the key elements of the tumor microenvironment as well as early research using cell-line derived, 3D spheroid tumor models that paved the way for the adoption of patient-derived spheroid and organoid models. In particular, 3D spheroid and organoid models provide a method for drug screening with a particular emphasis on influence of the TME in cancer immunotherapy. Full article
(This article belongs to the Special Issue Feature Papers in Organoids)
Show Figures

Figure 1

Article
Articular Tissue-Mimicking Organoids Derived from Mesenchymal Stem Cells and Induced Pluripotent Stem Cells
Organoids 2022, 1(2), 135-148; https://doi.org/10.3390/organoids1020011 - 14 Nov 2022
Cited by 3 | Viewed by 1560
Abstract
Organoids offer a promising strategy for articular tissue regeneration, joint disease modeling, and development of precision medicine. In this study, two types of human stem cells—primary mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs)—were employed to engineer organoids that mimicked bone, [...] Read more.
Organoids offer a promising strategy for articular tissue regeneration, joint disease modeling, and development of precision medicine. In this study, two types of human stem cells—primary mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs)—were employed to engineer organoids that mimicked bone, cartilage and adipose tissue, three key tissue components in articular joints. Prior to organoidogenesis, the iPSCs were first induced into mesenchymal progenitor cells (iMPCs). After characterizing the MSCs and iMPCs, they were used to generate cell-embedded extracellular matrix (ECM) constructs, which then underwent self-aggregation and lineage-specific differentiation in different induction media. Hydroxyapatite nanorods, an osteoinductive bioceramic, were leveraged to generate bone and osteochondral organoids, which effectively enhanced mineralization. The phenotypes of the generated organoids were confirmed on the basis of gene expression profiling and histology. Our findings demonstrate the feasibility and potential of generating articular tissue-recapitulating organoids from MSCs and iPSCs. Full article
Show Figures

Figure 1

Review
Meniscus Repair: From In Vitro Research to Patients
Organoids 2022, 1(2), 116-134; https://doi.org/10.3390/organoids1020010 - 02 Nov 2022
Cited by 1 | Viewed by 2598
Abstract
Walking, running, jumping, or even just standing up are habits that we all have to perform in our everyday lives. However, defects in tissues composing the knee joint can drastically alter our ability to complete those simple actions. The knee joint is made [...] Read more.
Walking, running, jumping, or even just standing up are habits that we all have to perform in our everyday lives. However, defects in tissues composing the knee joint can drastically alter our ability to complete those simple actions. The knee joint is made up of the interaction between bones (femur, tibia, and patella), tendons, ligaments, and the two menisci (lateral and medial) in order to ensure smooth body movements. The meniscus corresponds to a crescent-shaped fibrocartilaginous tissue, which is found in the knee joint between the femoral condyles and the tibial plateau. It plays a key role in the stability of the knee joint. However, it is quite vulnerable and therefore tears can occur within this tissue and compromise the proper function of the knee. Recently, numerous efforts have been made in order to find solutions to repair and regenerate the meniscus, supported by both bioengineering researchers and orthopedic surgeons. However, due to its poor healing capacity and its complex structure, the reconstruction of the meniscus remains particularly challenging. In this review, the current treatment options will be explained and the possibility of using organoids as building blocks for implant formation or as an in vitro three-dimensional model will be highlighted. Full article
Show Figures

Figure 1

Communication
Single-Cell Atlas of Patient-Derived Trophoblast Organoids in Ongoing Pregnancies
Organoids 2022, 1(2), 106-115; https://doi.org/10.3390/organoids1020009 - 02 Oct 2022
Cited by 1 | Viewed by 1972
Abstract
Trophoblast organoids (TOs) hold great promise for elucidating human placental development and function. By deriving TOs in ongoing pregnancies using chorionic villus sampling (CVS), we established a platform to study trophoblast differentiation and function in early pregnancy, including pregnancies with different fetal genetic [...] Read more.
Trophoblast organoids (TOs) hold great promise for elucidating human placental development and function. By deriving TOs in ongoing pregnancies using chorionic villus sampling (CVS), we established a platform to study trophoblast differentiation and function in early pregnancy, including pregnancies with different fetal genetic abnormalities. We addressed cellular heterogeneity of CVS-derived TOs by providing a single-cell transcriptomic atlas and showed that CVS-TOs recapitulate key aspects of the human placenta, including syncytial fusion and hormone synthesis. This study demonstrates the utility of trophoblast organoids for investigating genetic defects in the placenta and describes an experimental platform for future personalized placental medicine approaches, including genotype–phenotype mapping. Full article
Show Figures

Graphical abstract

Back to TopTop