Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,191)

Search Parameters:
Journal = Marine Drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Bioactivity Screening and Genomic Analysis Reveals Deep-Sea Fish Microbiome Isolates as Sources of Novel Antimicrobials
Mar. Drugs 2023, 21(8), 444; https://doi.org/10.3390/md21080444 - 07 Aug 2023
Viewed by 293
Abstract
With the increase in antimicrobial resistance and the subsequent demand for novel therapeutics, the deep-sea fish microbiome can be a relatively untapped source of antimicrobials, including bacteriocins. Previously, bacterial isolates were recovered from the gut of deep-sea fish sampled from the Atlantic Ocean.In [...] Read more.
With the increase in antimicrobial resistance and the subsequent demand for novel therapeutics, the deep-sea fish microbiome can be a relatively untapped source of antimicrobials, including bacteriocins. Previously, bacterial isolates were recovered from the gut of deep-sea fish sampled from the Atlantic Ocean.In this study, we used in vitro methods to screen a subset of these isolates for antimicrobial activity, and subsequently mined genomic DNA from isolates of interest for bacteriocin and other antimicrobial metabolite genes. We observed antimicrobial activity against foodborne pathogens, including Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis and Micrococcus luteus. In total, 147 candidate biosynthetic gene clusters were identified in the genomic sequences, including 35 bacteriocin/RiPP-like clusters. Other bioactive metabolite genes detected included non-ribosomal peptide synthases (NRPS), polyketide synthases (PKS; Types 1 and 3), beta-lactones and terpenes. Moreover, four unique bacteriocin gene clusters were annotated and shown to encode novel peptides: a class IIc bacteriocin, two class IId bacteriocins and a class I lanthipeptide (LanM subgroup). Our dual in vitro and in silico approach allowed for a more comprehensive understanding of the bacteriocinogenic potential of these deep-sea isolates and an insight into the antimicrobial molecules that they may produce. Full article
Show Figures

Figure 1

Article
New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains
Mar. Drugs 2023, 21(8), 443; https://doi.org/10.3390/md21080443 - 07 Aug 2023
Viewed by 230
Abstract
Antimicrobial resistance can be considered a hidden global pandemic and research must be reinforced for the discovery of new antibiotics. The spirotetronate class of polyketides, with more than 100 bioactive compounds described to date, has recently grown with the discovery of phocoenamicins, compounds [...] Read more.
Antimicrobial resistance can be considered a hidden global pandemic and research must be reinforced for the discovery of new antibiotics. The spirotetronate class of polyketides, with more than 100 bioactive compounds described to date, has recently grown with the discovery of phocoenamicins, compounds displaying different antibiotic activities. Three marine Micromonospora strains (CA-214671, CA-214658 and CA-218877), identified as phocoenamicins producers, were chosen to scale up their production and LC/HRMS analyses proved that EtOAc extracts from their culture broths produce several structurally related compounds not disclosed before. Herein, we report the production, isolation and structural elucidation of two new phocoenamicins, phocoenamicins D and E (12), along with the known phocoenamicin, phocoenamicins B and C (35), as well as maklamicin (7) and maklamicin B (6), the latter being reported for the first time as a natural product. All the isolated compounds were tested against various human pathogens and revealed diverse strong to negligible activity against methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis H37Ra, Enterococcus faecium and Enterococcus faecalis. Their cell viability was also evaluated against the human liver adenocarcinoma cell line (Hep G2), demonstrating weak or no cytotoxicity. Lastly, the safety of the major compounds obtained, phocoenamicin (3), phocoenamicin B (4) and maklamicin (7), was tested against zebrafish eleuthero embryos and all of them displayed no toxicity up to a concentration of 25 μM. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain 2)
Show Figures

Graphical abstract

Review
Secondary Metabolites, Biological Activities, and Industrial and Biotechnological Importance of Aspergillus sydowii
Mar. Drugs 2023, 21(8), 441; https://doi.org/10.3390/md21080441 - 05 Aug 2023
Viewed by 213
Abstract
Marine-derived fungi are renowned as a source of astonishingly significant and synthetically appealing metabolites that are proven as new lead chemicals for chemical, pharmaceutical, and agricultural fields. Aspergillus sydowii is a saprotrophic, ubiquitous, and halophilic fungus that is commonly found in different marine [...] Read more.
Marine-derived fungi are renowned as a source of astonishingly significant and synthetically appealing metabolites that are proven as new lead chemicals for chemical, pharmaceutical, and agricultural fields. Aspergillus sydowii is a saprotrophic, ubiquitous, and halophilic fungus that is commonly found in different marine ecosystems. This fungus can cause aspergillosis in sea fan corals leading to sea fan mortality with subsequent changes in coral community structure. Interestingly, A. sydowi is a prolific source of distinct and structurally varied metabolites such as alkaloids, xanthones, terpenes, anthraquinones, sterols, diphenyl ethers, pyrones, cyclopentenones, and polyketides with a range of bioactivities. A. sydowii has capacity to produce various enzymes with marked industrial and biotechnological potential, including α-amylases, lipases, xylanases, cellulases, keratinases, and tannases. Also, this fungus has the capacity for bioremediation as well as the biocatalysis of various chemical reactions. The current work aimed at focusing on the bright side of this fungus. In this review, published studies on isolated metabolites from A. sydowii, including their structures, biological functions, and biosynthesis, as well as the biotechnological and industrial significance of this fungus, were highlighted. More than 245 compounds were described in the current review with 134 references published within the period from 1975 to June 2023. Full article
Show Figures

Graphical abstract

Article
New Sorbicillinoids from the Mangrove Endophytic Fungus Trichoderma reesei SCNU-F0042
Mar. Drugs 2023, 21(8), 442; https://doi.org/10.3390/md21080442 - 05 Aug 2023
Viewed by 247
Abstract
Three new dimeric sorbicillinoids (13) and one new 3,4,6-trisubstituted α-pyrone (5), along with seven analogues (4 and 611), were isolated from the mangrove endophytic fungus Trichoderma reesei SCNU-F0042 under the guidance of molecular [...] Read more.
Three new dimeric sorbicillinoids (13) and one new 3,4,6-trisubstituted α-pyrone (5), along with seven analogues (4 and 611), were isolated from the mangrove endophytic fungus Trichoderma reesei SCNU-F0042 under the guidance of molecular networking approach. Their chemical structures were established by 1D and 2D NMR HR-ESI-MS and ECD analysis. In a bioassay, compound 2 exhibited moderate SARS-CoV-2 inhibitory activity with an EC50 value of 29.0 μM. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products)
Show Figures

Graphical abstract

Review
Microalgae: A Promising Source of Bioactive Phycobiliproteins
Mar. Drugs 2023, 21(8), 440; https://doi.org/10.3390/md21080440 - 04 Aug 2023
Viewed by 242
Abstract
Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, [...] Read more.
Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined. Full article
(This article belongs to the Special Issue Functional Foods from Marine Microalgae)
Show Figures

Graphical abstract

Review
Review of Marine Cyanobacteria and the Aspects Related to Their Roles: Chemical, Biological Properties, Nitrogen Fixation and Climate Change
Mar. Drugs 2023, 21(8), 439; https://doi.org/10.3390/md21080439 - 03 Aug 2023
Viewed by 682
Abstract
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper [...] Read more.
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant’s yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Figure 1

Article
Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae
Mar. Drugs 2023, 21(8), 438; https://doi.org/10.3390/md21080438 - 03 Aug 2023
Viewed by 503
Abstract
Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly [...] Read more.
Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases. Full article
(This article belongs to the Special Issue Functional Biomaterials from Marine Diatoms)
Show Figures

Graphical abstract

Article
Surf Redfish-Based ZnO-NPs and Their Biological Activity with Reference to Their Non-Target Toxicity
Mar. Drugs 2023, 21(8), 437; https://doi.org/10.3390/md21080437 - 02 Aug 2023
Viewed by 292
Abstract
The marine environment is a rich source of bioactive compounds. Therefore, the sea cucumber was isolated from the Red Sea at the Al-Ain Al-Sokhna coast and it was identified as surf redfish (Actinopyga mauritiana). The aqueous extract of the surf redfish [...] Read more.
The marine environment is a rich source of bioactive compounds. Therefore, the sea cucumber was isolated from the Red Sea at the Al-Ain Al-Sokhna coast and it was identified as surf redfish (Actinopyga mauritiana). The aqueous extract of the surf redfish was utilized as an ecofriendly, novel and sustainable approach to fabricate zinc oxide nanoparticles (ZnO-NPs). The biosynthesized ZnO-NPs were physico-chemically characterized and evaluated for their possible antibacterial and insecticidal activities. Additionally, their safety in the non-target organism model (Nile tilapia fish) was also investigated. ZnO-NPs were spherical with an average size of 24.69 ± 11.61 nm and had a peak at 350 nm as shown by TEM and UV-Vis, respectively. XRD analysis indicated a crystalline phase of ZnO-NPs with an average size of 21.7 nm. The FTIR pattern showed biological residues from the surf redfish extract, highlighting their potential role in the biosynthesis process. DLS indicated a negative zeta potential (−19.2 mV) of the ZnO-NPs which is a good preliminary indicator for their stability. ZnO-NPs showed larvicidal activity against mosquito Culex pipiens (LC50 = 15.412 ppm and LC90 = 52.745 ppm) and a potent adulticidal effect to the housefly Musca domestica (LD50 = 21.132 ppm and LD90 = 84.930 ppm). Tested concentrations of ZnO-NPs showed strong activity against the 3rd larval instar. Topical assays revealed dose-dependent adulticidal activity against M. domestica after 24 h of treatment with ZnO-NPs. ZnO-NPs presented a wide antibacterial activity against two fish-pathogen bacteria, Pseudomonas aeruginosa and Aeromonas hydrophila. Histopathological and hematological investigations of the non-target organism, Nile tilapia fish exposed to 75–600 ppm ZnO-NPs provide dose-dependent impacts. Overall, data highlighted the potential applications of surf redfish-mediated ZnO-NPs as an effective and safe way to control mosquitoes, houseflies and fish pathogenic bacteria. Full article
(This article belongs to the Special Issue Perspectives for the Development of New Multitarget Marine Drugs)
Show Figures

Graphical abstract

Article
From Threat to Opportunity: Harnessing the Invasive Carpobrotus edulis (L.) N.E.Br for Nutritional and Phytotherapeutic Valorization Amid Seasonal and Spatial Variability
Mar. Drugs 2023, 21(8), 436; https://doi.org/10.3390/md21080436 - 01 Aug 2023
Viewed by 328
Abstract
Carpobrotus edulis (L.) N.E.Br. (Hottentot-fig) is a problematic invasive species found in coastal areas worldwide. Mechanical removal is a common control method, leaving the removed biomass available as a possible source of natural phytochemicals with prospective commercial applications. While the Hottentot-fig’s vegetative organs [...] Read more.
Carpobrotus edulis (L.) N.E.Br. (Hottentot-fig) is a problematic invasive species found in coastal areas worldwide. Mechanical removal is a common control method, leaving the removed biomass available as a possible source of natural phytochemicals with prospective commercial applications. While the Hottentot-fig’s vegetative organs have been studied previously, this work establishes for the first time a seasonal and spatial comparative analysis of its nutritional, chemical, and bioactivity profiles (in three locations over four seasons). Proximate and mineral contents were assessed, along with its phenolic composition and in vitro antioxidant and anti-inflammatory properties. Hottentot-fig’s biomass offered a good supply of nutrients, mainly carbohydrates, proteins, and minerals, with a tendency for higher concentrations of the most relevant minerals and proteins in autumn and winter, and in plants from sites A (Ria de Alvor lagoon) and B (Ancão beach). The extracts were rich in polyphenolics, with higher levels in spring and summer, especially for luteolin-7-O-glucoside and salicylic and coumaric acids. The extracts were also effective antioxidants, with stronger radical scavenging activities in spring and summer, along with anti-inflammatory properties. Our results suggest that the usually discarded plant material of this invasive halophyte could be valuable as a source of natural products with potential biotechnological applications in the food and nutraceutical industries. Full article
Show Figures

Figure 1

Article
Five Years Monitoring the Emergence of Unregulated Toxins in Shellfish in France (EMERGTOX 2018–2022)
Mar. Drugs 2023, 21(8), 435; https://doi.org/10.3390/md21080435 - 31 Jul 2023
Viewed by 224
Abstract
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in [...] Read more.
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin β-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018–2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins. Full article
(This article belongs to the Special Issue Emerging Toxins Accumulation in Shellfish)
Show Figures

Figure 1

Article
Anti-Protozoan Activities of Polar Fish-Derived Polyalanine Synthetic Peptides
Mar. Drugs 2023, 21(8), 434; https://doi.org/10.3390/md21080434 - 31 Jul 2023
Viewed by 250
Abstract
Chagas disease, sleeping sickness and malaria are infectious diseases caused by protozoan parasites that kill millions of people worldwide. Here, we performed in vitro assays of Pa-MAP, Pa-MAP1.9, and Pa-MAP2 synthetic polyalanine peptides derived from the polar fish Pleuronectes americanus toward [...] Read more.
Chagas disease, sleeping sickness and malaria are infectious diseases caused by protozoan parasites that kill millions of people worldwide. Here, we performed in vitro assays of Pa-MAP, Pa-MAP1.9, and Pa-MAP2 synthetic polyalanine peptides derived from the polar fish Pleuronectes americanus toward Trypanosoma cruzi, T. brucei gambiense and Plasmodium falciparum activities. We demonstrated that the peptides Pa-MAP1.9 and Pa-MAP2 were effective to inhibit T. brucei growth. In addition, structural analyses using molecular dynamics (MD) studies showed that Pa-MAP2 penetrates deeper into the membrane and interacts more with phospholipids than Pa-MAP1.9, corroborating the previous in vitro results showing that Pa-MAP1.9 acts within the cell, while Pa-MAP2 acts via membrane lysis. In conclusion, polyalanine Pa-MAP1.9 and Pa-MAP2 presented activity against bloodstream forms of T. b. gambiense, thus encouraging further studies on the application of these peptides as a treatment for sleeping sickness. Full article
(This article belongs to the Special Issue Marine Drugs Research in Brazil)
Show Figures

Graphical abstract

Article
Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer’s Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13
Mar. Drugs 2023, 21(8), 433; https://doi.org/10.3390/md21080433 - 31 Jul 2023
Viewed by 405
Abstract
Alzheimer’s disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is [...] Read more.
Alzheimer’s disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition. Full article
Show Figures

Graphical abstract

Article
Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece
Mar. Drugs 2023, 21(8), 432; https://doi.org/10.3390/md21080432 - 29 Jul 2023
Viewed by 335
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin involved in poisoning cases, especially through the consumption of puffer fish. Knowledge of the toxicity equivalency factors (TEFs) of TTX analogues is crucial in monitoring programs to estimate the toxicity of samples analyzed with instrumental analysis [...] Read more.
Tetrodotoxin (TTX) is a potent marine neurotoxin involved in poisoning cases, especially through the consumption of puffer fish. Knowledge of the toxicity equivalency factors (TEFs) of TTX analogues is crucial in monitoring programs to estimate the toxicity of samples analyzed with instrumental analysis methods. In this work, TTX analogues were isolated from the liver of a Lagocephalus sceleratus individual caught on South Crete coasts. A cell-based assay (CBA) for TTXs was optimized and applied to the establishment of the TEFs of 5,11-dideoxyTTX, 11-norTTX-6(S)-ol, 11-deoxyTTX and 5,6,11-trideoxyTTX. Results showed that all TTX analogues were less toxic than the parent TTX, their TEFs being in the range of 0.75–0.011. Then, different tissues of three Lagocephalus sceleratus individuals were analyzed with CBA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained TEFs were applied to the TTX analogues’ concentrations obtained by LC-MS/MS analysis, providing an indication of the overall toxicity of the sample. Information about the TEFs of TTX analogues is valuable for food safety control, allowing the estimation of the risk of fish products to consumers. Full article
(This article belongs to the Special Issue Tetrodotoxins: Detection, Biosynthesis and Biological Effects)
Show Figures

Figure 1

Article
Anthraquinone Derivatives and Other Aromatic Compounds from Marine Fungus Asteromyces cruciatus KMM 4696 and Their Effects against Staphylococcus aureus
Mar. Drugs 2023, 21(8), 431; https://doi.org/10.3390/md21080431 - 29 Jul 2023
Viewed by 343
Abstract
New anthraquinone derivatives acruciquinones A–C (13), together with ten known metabolites, were isolated from the obligate marine fungus Asteromyces cruciatus KMM 4696. Acruciquinone C is the first member of anthraquinone derivatives with a 6/6/5 backbone. The structures of isolated [...] Read more.
New anthraquinone derivatives acruciquinones A–C (13), together with ten known metabolites, were isolated from the obligate marine fungus Asteromyces cruciatus KMM 4696. Acruciquinone C is the first member of anthraquinone derivatives with a 6/6/5 backbone. The structures of isolated compounds were established based on NMR and MS data. The absolute stereoconfigurations of new acruciquinones A–C were determined using ECD and quantum chemical calculations (TDDFT approach). A plausible biosynthetic pathway of the novel acruciquinone C was proposed. Compounds 14 and 613 showed a significant antimicrobial effects against Staphylococcus aureus growth, and acruciquinone A (1), dendryol B (4), coniothyrinone B (7), and ω-hydroxypachybasin (9) reduced the activity of a key staphylococcal enzyme, sortase A. Moreover, the compounds, excluding 4, inhibited urease activity. We studied the effects of anthraquinones 1, 4, 7, and 9 and coniothyrinone D (6) in an in vitro model of skin infection when HaCaT keratinocytes were cocultivated with S. aureus. Anthraquinones significantly reduce the negative impact of S. aureus on the viability, migration, and proliferation of infected HaCaT keratinocytes, and acruciquinone A (1) revealed the most pronounced effect. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi)
Show Figures

Figure 1

Article
Enhanced In Vitro Anti-Photoaging Effect of Degraded Seaweed Polysaccharides by UV/H2O2 Treatment
Mar. Drugs 2023, 21(8), 430; https://doi.org/10.3390/md21080430 - 29 Jul 2023
Viewed by 285
Abstract
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2 [...] Read more.
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides. Full article
Show Figures

Graphical abstract

Back to TopTop