Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,406)

Search Parameters:
Journal = CIMB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Diagnosis of a Rabbit Hemorrhagic Disease Virus 2 (RHDV2) and the Humoral Immune Protection Effect of VP60 Vaccine
Curr. Issues Mol. Biol. 2023, 45(8), 6605-6617; https://doi.org/10.3390/cimb45080417 - 08 Aug 2023
Viewed by 106
Abstract
Rabbit hemorrhagic disease (RHD) is known as rabbit plague and hemorrhagic pneumonia. It is an acute, septic, and highly fatal infectious disease caused by the Lagovirus rabbit hemorrhagic disease virus (RHDV) in the family Caliciviridae that infects wild and domestic rabbits and hares [...] Read more.
Rabbit hemorrhagic disease (RHD) is known as rabbit plague and hemorrhagic pneumonia. It is an acute, septic, and highly fatal infectious disease caused by the Lagovirus rabbit hemorrhagic disease virus (RHDV) in the family Caliciviridae that infects wild and domestic rabbits and hares (lagomorphs). At present, RHDV2 has caused huge economic losses to the commercial rabbit trade and led to a decline in the number of wild lagomorphs worldwide. We performed a necropsy and pathological observations on five dead rabbits on a rabbit farm in Tai’an, China. The results were highly similar to the clinical and pathological changes of typical RHD. RHDV2 strain was isolated and identified by RT-PCR, and partial gene sequencing and genetic evolution analysis were carried out. There were significant differences in genetic characteristics and antigenicity between RHDV2 and classical RHDV strain, and the vaccine prepared with the RHDV strain cannot effectively prevent rabbit infection with RHDV2. Therefore, we evaluated the protective efficacy of a novel rabbit hemorrhagic virus baculovirus vector inactivated vaccine (VP60) in clinical application by animal regression experiment. The result showed that VP60 could effectively induce humoral immunity in rabbits. The vaccine itself had no significant effect on the health status of rabbits. This study suggested that the clinical application of VP60 may provide new ideas for preventing the spread of RHD2. Full article
(This article belongs to the Special Issue Latest Advances in Molecular and Cellular Virology)
Show Figures

Figure 1

Article
Aging Aggravates Periodontal Inflammatory Responses and Alveolar Bone Resorption by Porphyromonas gingivalis Infection
Curr. Issues Mol. Biol. 2023, 45(8), 6593-6604; https://doi.org/10.3390/cimb45080416 - 08 Aug 2023
Viewed by 81
Abstract
Periodontitis is a chronic inflammatory disease driven by periodontal pathogens such as Porphyromonas gingivalis (P. gingivalis), and its prevalence increases with age. However, little is known about the effect of immunosenescence on inflammatory response to P. gingivalis infection. In the present study, 16S rDNA [...] Read more.
Periodontitis is a chronic inflammatory disease driven by periodontal pathogens such as Porphyromonas gingivalis (P. gingivalis), and its prevalence increases with age. However, little is known about the effect of immunosenescence on inflammatory response to P. gingivalis infection. In the present study, 16S rDNA sequencing analysis showed the relative abundance of P. gingivalis was significantly higher in periodontitis patients than healthy group, but there was no difference between the young (20 to 40 years old) and old (65 to 86 years old) periodontitis groups. Furthermore, the cytotoxic effect of P. gingivalis was greater on old THP-1 macrophages and on bone mar-row-derived cells (BMDMs) from old mice, and levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-12 were higher in old than in young THP-1 macrophages. Furthermore, the activations of inflammasome components for IL-1β production by P. gingivalis infection were greater in old THP-1 macrophages. Finally, bone loss was significantly greater in P. gingivalis-infected aged mice than in young mice. These findings indicate that aging aggravates P. gingivalis-induced inflammatory cytokine secretion and inflammasome activation. The study enhances understanding of the relationship between periodontal immunosenescence and inflammatory response in the elderly. Full article
(This article belongs to the Special Issue Complex Molecular Mechanism of Monogenic Diseases 2.0)
Show Figures

Figure 1

Communication
The Effects of Sargassum horneri Extract and Fucoidan on Tear Hyposecretion and Ocular Surface Injury in Rats with Dry Eye Diseases
Curr. Issues Mol. Biol. 2023, 45(8), 6583-6592; https://doi.org/10.3390/cimb45080415 - 08 Aug 2023
Viewed by 88
Abstract
Hyperosmotic stress caused by tear hyposection is a leading cause of dry eye disease. We investigated the prevention of dry eye disease in corneal epithelial cells and in rats that were induced to develop dry eye disease via unilateral excision of their exorbital [...] Read more.
Hyperosmotic stress caused by tear hyposection is a leading cause of dry eye disease. We investigated the prevention of dry eye disease in corneal epithelial cells and in rats that were induced to develop dry eye disease via unilateral excision of their exorbital lacrimal gland using Sargassum horneri extract (AB_SH) and its bioactive component fucoidan. Oral administration of AB_SH (250 mg/kg and 500 mg/kg) and fucoidan (100 mg/kg) was conducted for 7 days. In order to measure tear secretion, phenol red thread tear tests were performed along with corneal irregularity measurements. The apoptotic injury in the cornea and the lacrimal gland was evaluated using TUNEL staining. AB_SH and fucoidan were shown to suppress apoptosis and the expression of apoptosis-related proteins in human corneal epithelial cells under hyperosmotic conditions. Oral administration of AB_SH and fucoidan attenuated tear hyposecretion and corneal irregularity in the lacrimal gland-excised rats. In addition, AB_SH and fucoidan also reduced apoptosis in the cornea and lacrimal gland. This study suggests that S. horneri extract and fucoidan can effectively ameliorate dry eye disease by suppressing the apoptosis of ocular tissues. Full article
(This article belongs to the Special Issue The Role of Bioactives in Inflammation)
Show Figures

Figure 1

Article
Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking
Curr. Issues Mol. Biol. 2023, 45(8), 6564-6582; https://doi.org/10.3390/cimb45080414 - 07 Aug 2023
Viewed by 238
Abstract
Taxanes are natural compounds for the treatment of lung cancer, but the molecular mechanism behind the effects is unclear. In the present study, through network pharmacology and molecular docking, the mechanism of the target and pathway of taxanes in the treatment of lung [...] Read more.
Taxanes are natural compounds for the treatment of lung cancer, but the molecular mechanism behind the effects is unclear. In the present study, through network pharmacology and molecular docking, the mechanism of the target and pathway of taxanes in the treatment of lung cancer was studied. The taxanes targets were determined by PubChem database, and an effective compounds-targets network was constructed. The GeneCards database was used to determine the disease targets of lung cancer, and the intersection of compound targets and disease targets was obtained. The Protein–Protein Interaction (PPI) network of the intersection targets was analyzed, and the PPI network was constructed by Cytoscape 3.6.0 software. The hub targets were screened according to the degree value, and the binding activity between taxanes and hub targets was verified by molecular docking. The results showed that eight taxane-active compounds and 444 corresponding targets were screened out, and 131 intersection targets were obtained after mapping with lung cancer disease targets. The hub targets obtained by PPI analysis were TP53, EGFR, and AKT1. Gene Ontology (GO) biological function enrichment analysis obtained 1795 biological process (BP) terms, 101 cellular component (CC) terms, and 164 molecular function (MF) terms. There were 179 signaling pathways obtained by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Twenty signaling pathways were screened out, mainly pathways in cancer, proteoglycans in cancer pathway, microRNAs in cancer pathway, and so on. Molecular docking shows that the binding energies of eight taxanes with TP53, EGFR, and AKT1 targets were less than −8.8 kcal/mol, taxanes acts on TP53, EGFR, and AKT1 targets through pathways in cancer, proteoglycans in cancer pathway and microRNAs in cancer pathway, and plays a role in treating lung cancer in biological functions such as protein binding, enzyme binding, and identical protein binding. Full article
Show Figures

Figure 1

Review
Precision Medicine in Erythropoietin Deficiency and Treatment Resistance: A Novel Approach to Management of Anaemia in Chronic Kidney Disease
Curr. Issues Mol. Biol. 2023, 45(8), 6550-6563; https://doi.org/10.3390/cimb45080413 - 07 Aug 2023
Viewed by 166
Abstract
The study of anaemia is a well-developed discipline where the concepts of precision medicine have, in part, been researched extensively. This review discusses the treatment of erythropoietin (EPO) deficiency anaemia and resistance in cases of chronic kidney disease (CKD). Traditionally, erythropoietin-stimulating agents (ESAs) [...] Read more.
The study of anaemia is a well-developed discipline where the concepts of precision medicine have, in part, been researched extensively. This review discusses the treatment of erythropoietin (EPO) deficiency anaemia and resistance in cases of chronic kidney disease (CKD). Traditionally, erythropoietin-stimulating agents (ESAs) and iron supplementation have been used to manage anaemia in cases of CKD. However, these treatments pose potential risks, including cardiovascular and thromboembolic events. Newer treatments have emerged to address these risks, such as slow-release and low-dosage intravenous iron, oral iron supplementation, and erythropoietin–iron combination therapy. Another novel approach is the use of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs). This review highlights the need for precision medicine targeting the genetic components of EPO deficiency anaemia in CKD and discusses individual variability in genes such as the erythropoietin gene (EPO), the interleukin-β gene (IL-β), and the hypoxia-inducible factor gene (HIF). Pharmacogenetic testing aims to provide targeted therapies and interventions that are tailored to the specific characteristics of an individual, thus optimising treatment outcomes and minimising resistance and adverse effects. This article concludes by suggesting that receptor modification has the potential to revolutionise the treatment outcomes of patients with erythropoietin deficiency anaemia through the integration of the mentioned approach. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

Article
Impact of Genomic Deletion RD16 on the Expression of the Mycobacterium bovis BCG Moreau VapBC47 Toxin-Antitoxin System
Curr. Issues Mol. Biol. 2023, 45(8), 6538-6549; https://doi.org/10.3390/cimb45080412 - 07 Aug 2023
Viewed by 253
Abstract
Mycobacterium bovis BCG is the only vaccine against tuberculosis. The variable forms of cultivation throughout the years, before seed-lots were developed, allowed in vitro evolution of the original strain, generating a family of vaccines with different phenotypic and genotypic characteristics. Molecular studies revealed [...] Read more.
Mycobacterium bovis BCG is the only vaccine against tuberculosis. The variable forms of cultivation throughout the years, before seed-lots were developed, allowed in vitro evolution of the original strain, generating a family of vaccines with different phenotypic and genotypic characteristics. Molecular studies revealed regions of difference (RDs) in the genomes of the various BCG strains. This work aims to characterize the gene pair rv3407-rv3408 (vapB47-vapC47), coding for a toxin–antitoxin system of the VapBC family, and to evaluate possible transcriptional effects due to the adjacent BCG Moreau-specific genomic deletion RD16. We show that these genes are co-transcribed in BCG strains Moreau and Pasteur, and that the inactivation of an upstream transcriptional repressor (Rv3405c) due to RD16 has a polar effect, leading to increased vapBC47 expression. Furthermore, we detect VapB47 DNA binding in vitro, dependent on a 5′ vapB47 sequence that contributes to a palindrome, spanning the promoter and coding region. Our data shed light on the regulation of VapBC systems and on the impact of the BCG Moreau RD16 deletion in the expression of adjacent genes, contributing to a better understanding of BCG Moreau physiology. Full article
(This article belongs to the Special Issue Molecular Research in Vaccinology and Vaccine Development)
Show Figures

Figure 1

Article
An mRNA Profiling Study of Vaginal Swabs from Pre- and Postmenopausal Women
Curr. Issues Mol. Biol. 2023, 45(8), 6526-6537; https://doi.org/10.3390/cimb45080411 - 07 Aug 2023
Viewed by 217
Abstract
Body fluid identification by means of mRNA profiling provides valuable supplementary information in forensic investigations. In particular, the detection of vaginal mucosa mRNA markers is highly relevant in sexual assault cases. Although the vagina undergoes characteristic age-related physiological changes over a lifetime, few [...] Read more.
Body fluid identification by means of mRNA profiling provides valuable supplementary information in forensic investigations. In particular, the detection of vaginal mucosa mRNA markers is highly relevant in sexual assault cases. Although the vagina undergoes characteristic age-related physiological changes over a lifetime, few studies have evaluated the efficacy of vaginal mRNA markers in women of different ages. In this multicentric study, a 19-plex mRNA profiling assay including vaginal-specific markers (CYP2B7P1, MUC4, MYOZ1) was tested in a collection of 6–20-month-old vaginal swabs obtained from pre- (n = 84) and postmenopausal (n = 55) female volunteer donors. Overall, participating laboratories were able to correctly identify ~85% of samples as vaginal mucosa by mRNA profiling. The assay’s success rate did not differ between the two age groups and was not affected by the time interval between swab collection and RNA analysis. MYOZ1 resulted a less sensitive vaginal marker compared to MUC4 and CYP2B7P1. A significant relative increase in the contribution to the total amplification signal was observed for MUC4, compared to CYP2B7P1 and MYOZ1, in postmenopausal women. Observation of other body fluids and tissues different from vaginal mucosa was also evaluated in connection to information on previous sexual activity and menstrual cycle phase at the time of sampling. Full article
(This article belongs to the Special Issue Studying the Function of RNAs Using Omics Approaches)
Show Figures

Figure 1

Article
Different RONS Generation in MTC-SK and NSCL Cells Lead to Varying Antitumoral Effects of Alpha-Ketoglutarate + 5-HMF
Curr. Issues Mol. Biol. 2023, 45(8), 6503-6525; https://doi.org/10.3390/cimb45080410 - 07 Aug 2023
Viewed by 330
Abstract
Background: Carbonylated proteins (CPs) serve as specific indicators of increased reactive oxygen and nitrogen species (RONS) production in cancer cells, attributed to the dysregulated mitochondrial energy metabolism known as the Warburg effect. The aim of this study was to investigate the potential of [...] Read more.
Background: Carbonylated proteins (CPs) serve as specific indicators of increased reactive oxygen and nitrogen species (RONS) production in cancer cells, attributed to the dysregulated mitochondrial energy metabolism known as the Warburg effect. The aim of this study was to investigate the potential of alpha-ketoglutarate (aKG), 5-hydroxymethylfurfural (5-HMF), and their combination as mitochondrial-targeting antioxidants in MTC-SK or NCI-H23 cancer cells. Methods: MTC-SK and NCI-H23 cells were cultured in the absence or presence of varying concentrations (0–500 µg/mL) of aKG, 5-HMF, and the combined aKG + 5-HMF solutions. After 0, 24, 48, and 72 h, mitochondrial activity, cancer cell membrane CP levels, cell growth, and caspase-3 activity were assessed in aliquots of MTC-SK and NCI-H23 cells. Results: The mitochondrial activity of MTC-SK cells exhibited a concentration- and time-dependent reduction upon treatment with aKG, 5-HMF, or the combined aKG + 5-HMF. The half-maximal inhibitory concentration (IC50%) for mitochondrial activity was achieved at 500 µg/mL aKG, 200 µg/mL 5-HMF, and 200 µg/mL aKG + 66.7 µg/mL 5-HMF after 72 h. In contrast, NCI-H23 cells showed a minimal reduction (10%) in mitochondrial activity even at the highest combined concentration of aKG + 5-HMF. The CP levels in MTC-SK cells were measured at 8.7 nmol/mg protein, while NCI-H23 cells exhibited CP levels of 1.4 nmol/mg protein. The combination of aKG + 5-HMF led to a decrease in CP levels specifically in MTC-SK cells. The correlation between mitochondrial activity and CP levels in the presence of different concentrations of combined aKG + 5-HMF in MTC-SK cells demonstrated a linear and concentration-dependent decline in CP levels and mitochondrial activity. Conversely, the effect was less pronounced in NCI-H23 cells. Cell growth of MTC-CK cells was reduced to 60% after 48 h and maintained at 50% after 72 h incubation when treated with 500 µg/mL aKG (IC50%). Addition of 500 µg/mL 5-HMF inhibited cell growth completely regardless of the incubation time. The IC50% for 5-HMF on MTC-CK cell growth was calculated at 375 µg/mL after 24 h incubation and 200 µg/mL 5-HMF after 72 h. MTC-SK cells treated with 500 µg/mL aKG + 167 µg/mL 5-HMF showed no cell growth. The calculated IC50% for the combined substances was 250 µg/mL aKG + 83.3 µg/mL 5-HMF (48 h incubation) and 200 µg/mL aKG + 66.7 µg/mL 5-HMF (72 h incubation). None of the tested concentrations of aKG, 5-HMF, or the combined solution had any effect on NCI-H23 cell growth at any incubation time. Caspase-3 activity increased to 21% in MTC-CK cells in the presence of 500 µg/mL aKG, while an increase to 59.6% was observed using 500 µg/mL 5-HMF. The combination of 500 µg/mL aKG + 167.7 µg/mL 5-HMF resulted in a caspase-3 activity of 55.2%. No caspase-3 activation was observed in NCI-H23 cells when treated with aKG, 5-HMF, or the combined solutions. Conclusion: CPs may serve as potential markers for distinguishing between cancer cells regulated by RONS. The combination of aKG + 5-HMF showed induced cell death in high-RONS-generating cancer cells compared to low-RONS-generating cancer cells. Full article
(This article belongs to the Special Issue Mitochondrial Function and Dysfunction)
Show Figures

Figure 1

Article
Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh
Curr. Issues Mol. Biol. 2023, 45(8), 6485-6502; https://doi.org/10.3390/cimb45080409 - 05 Aug 2023
Viewed by 381
Abstract
Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined [...] Read more.
Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were blaTEM (76.09%), blaCTX-M1 (71.74%), and blaNDM (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Review
Application of Atmospheric and Room-Temperature Plasma (ARTP) to Microbial Breeding
Curr. Issues Mol. Biol. 2023, 45(8), 6466-6484; https://doi.org/10.3390/cimb45080408 - 04 Aug 2023
Viewed by 412
Abstract
Atmospheric and room-temperature plasma (ARTP) is an efficient microbial mutagenesis method with broad application prospects. Compared to traditional methods, ARTP technology can more effectively induce DNA damage and generate stable mutant strains. It is characterized by its simplicity, cost-effectiveness, and avoidance of hazardous [...] Read more.
Atmospheric and room-temperature plasma (ARTP) is an efficient microbial mutagenesis method with broad application prospects. Compared to traditional methods, ARTP technology can more effectively induce DNA damage and generate stable mutant strains. It is characterized by its simplicity, cost-effectiveness, and avoidance of hazardous chemicals, presenting a vast potential for application. The ARTP technology is widely used in bacterial, fungal, and microalgal mutagenesis for increasing productivity and improving characteristics. In conclusion, ARTP technology holds significant promise in the field of microbial breeding. Through ARTP technology, we can create mutant strains with specific genetic traits and improved performance, thereby increasing yield, improving quality, and meeting market demands. The field of microbial breeding will witness further innovation and progress with continuous refinement and optimization of ARTP technology. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Article
Forced Swimming-Induced Depressive-like Behavior and Anxiety Are Reduced by Chlorpheniramine via Suppression of Oxidative and Inflammatory Mediators and Activating the Nrf2-BDNF Signaling Pathway
Curr. Issues Mol. Biol. 2023, 45(8), 6449-6465; https://doi.org/10.3390/cimb45080407 - 04 Aug 2023
Viewed by 365
Abstract
The first-generation antihistamine chlorpheniramine (CPA) is believed to have both anxiolytic and antidepressant properties. The current study sought to assess the mechanisms behind the antidepressant and anxiolytic effects of CPA therapy concerning oxidative stress, inflammation, and nuclear factor p45 for erythroid 2-Brain-derived neurotrophic [...] Read more.
The first-generation antihistamine chlorpheniramine (CPA) is believed to have both anxiolytic and antidepressant properties. The current study sought to assess the mechanisms behind the antidepressant and anxiolytic effects of CPA therapy concerning oxidative stress, inflammation, and nuclear factor p45 for erythroid 2-Brain-derived neurotrophic factor (Nrf2-BDNF) signaling pathway in forced swimming-induced depressive-like behavior and anxiety. Eighteen male Wistar rats (180–200 gm) rats were separated into three groups (n = 6): a stressed group (acute stress) that underwent the forced swimming test (FST) and a stressed group that received pretreatment with CPA (10 mg/kg body weight) for 3 weeks (CPA + acute stress). Animals were subsequently put through the following behavioral tests after undergoing a forced swim test (FST) for 5 min: an immobility test, open field test, and elevated plus maze test. Serum cortisol levels were measured when the rats were euthanized at the end of the experiments. Brain neurotransmitters (cortisol, serotonin, and noradrenaline), oxidative stress (SOD and MDA), inflammatory (IL-6 and IL-1) biomarkers, and the Nrf2-BDNF signaling pathway in the hippocampus and cerebral cortex tissues was determined. CPA prevented stress-induced increases in cortisol levels (p < 0.0001), decreased brain neurotransmitters, and increased oxidative stress and inflammation. CPA also upregulated the Nrf2-BDNF signaling pathway. Thus, CPA mitigates depressive-like behavior and anxiety by inhibiting oxidative stress and inflammation and upregulating the Nrf2-BDNF signaling pathway in the brain tissues. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Article
Phenotypic Characterization and Comparative Genomic Analyses of Mycobacteriophage WIVsmall as A New Member Assigned to F1 Subcluster
Curr. Issues Mol. Biol. 2023, 45(8), 6432-6448; https://doi.org/10.3390/cimb45080406 - 03 Aug 2023
Viewed by 234
Abstract
In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring [...] Read more.
In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min. Full article
(This article belongs to the Special Issue Advanced Research in Antimicrobial and Antiviral Drugs)
Show Figures

Figure 1

Article
Antidiabetic Effect of Fermented Mesembryanthemum crystallinum L. in db/db Mice Involves Regulation of PI3K-Akt Pathway
Curr. Issues Mol. Biol. 2023, 45(8), 6415-6431; https://doi.org/10.3390/cimb45080405 - 03 Aug 2023
Viewed by 307
Abstract
Type 2 diabetes (T2D) is a serious health issue with increasing incidences worldwide. However, current medications have limitations due to side effects such as decreased appetite, stomach pain, diarrhea, and extreme tiredness. Here, we report the effect of fermented ice plant (FMC) in [...] Read more.
Type 2 diabetes (T2D) is a serious health issue with increasing incidences worldwide. However, current medications have limitations due to side effects such as decreased appetite, stomach pain, diarrhea, and extreme tiredness. Here, we report the effect of fermented ice plant (FMC) in the T2M mouse model of db/db mice. FMC showed a greater inhibition of lipid accumulation compared to unfermented ice plant extract. Two-week oral administration with FMC inhibited body weight gain, lowered fasting blood glucose, and improved glucose tolerance. Serum parameters related to T2D including insulin, glycosylated hemoglobin, adiponectin, and cholesterols were improved as well. Histological analysis confirmed the protective effect of FMC on pancreas and liver destruction. FMC treatment significantly increased the expression and phosphorylation of IRS-1, PI3K, and AKT. Additionally, AMP-activated protein kinase phosphorylation and nuclear factor erythroid 2–related factor 2 were also increased in the liver tissues of db/db mice treated with FMC. Overall, our results indicate the anti-diabetic effect of FMC; therefore, we suggest that FMC may be useful as a therapeutic agent for T2D. Full article
Show Figures

Figure 1

Article
The Effect of the Mixed Extract of Kalopanax pictus Nakai and Achyranthes japonica Nakai on the Improvement of Degenerative Osteoarthritis through Inflammation Inhibition in the Monosodium Iodoacetate-Induced Mouse Model
Curr. Issues Mol. Biol. 2023, 45(8), 6395-6414; https://doi.org/10.3390/cimb45080404 - 01 Aug 2023
Viewed by 256
Abstract
Osteoarthritis is a chronic inflammatory disease, and, due to the lack of fundamental treatment, the main objective is to alleviate pain and prevent cartilage damage. Kalopanax pictus Nakai and Achyranthes japonica Nakai are herbal plants known for their excellent anti-inflammatory properties. The objective [...] Read more.
Osteoarthritis is a chronic inflammatory disease, and, due to the lack of fundamental treatment, the main objective is to alleviate pain and prevent cartilage damage. Kalopanax pictus Nakai and Achyranthes japonica Nakai are herbal plants known for their excellent anti-inflammatory properties. The objective of this study is to confirm the potential of a mixture extract of Kalopanax pictus Nakai and Achyranthes japonica Nakai as a functional raw material for improving osteoarthritis through anti-inflammatory effects in macrophages and MIA-induced arthritis experimental animals. In macrophages inflamed by lipopolysaccharide (LPS), treatment of Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture inhibits NF-κB and mitogen-activated protein kinase (MAPK) activities, thereby inhibiting inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), inflammatory factors PGE2, MMP-2, and MMP-9, and nitric oxide (NO) was reduced. In addition, in an animal model of arthritis induced by MIA (monosodium iodoacetate), administration of Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture reduced blood levels of inflammatory cytokines TNF-α and IL-6, inflammatory factors prostaglandin E2(PGE2), matrix metalloproteinase-2(MMP-2), and NO. Through these anti-inflammatory effects, MIA-induced pain reduction (recovery of clinical index, increase in weight bearing, and increase in area and width of the foot), recovery of meniscus damage, loss of cartilage tissue or inflammatory cells in tissue infiltration reduction, and recovery of the proteglycan layer were confirmed. Therefore, it is considered that Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture has the potential as a functional raw material that promotes joint health. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

Communication
The Spectrum of Germline Nucleotide Variants in Gastric Cancer Patients in the Kyrgyz Republic
Curr. Issues Mol. Biol. 2023, 45(8), 6383-6394; https://doi.org/10.3390/cimb45080403 - 31 Jul 2023
Viewed by 263
Abstract
Gastric cancer is a major challenge in modern oncology due to its high detection rate and prevalence. While sporadic cases make up the majority of gastric cancer, hereditary gastric cancer is caused by germline mutations in several genes linked to different syndromes. Thus, [...] Read more.
Gastric cancer is a major challenge in modern oncology due to its high detection rate and prevalence. While sporadic cases make up the majority of gastric cancer, hereditary gastric cancer is caused by germline mutations in several genes linked to different syndromes. Thus, identifying hereditary forms of gastric cancer is considered crucial globally. A survey study using NGS-based analysis was conducted to determine the frequency of different types of hereditary gastric cancer in the yet-unstudied Kyrgyz population. The study cohort included 113 patients with diagnosed gastric cancer from Kyrgyzstan. The age of patients was 57.6 ± 8.9. Next-generation sequencing analysis of genomic DNA was performed using a custom Roche NimbleGen enrichment panel. The results showed that 6.2% (7/113) of the patients had pathogenic or likely pathogenic genetic variants. Additionally, 3.5% (4/113) of the patients carried heterozygous pathogenic/likely pathogenic variants in high penetrance genes, such as TP53, POLD1, RET, and BRCA2. Moreover, 2.7% (3/113) of the patients carried heterozygous mutations in genes linked to autosomal recessive conditions, specifically PALB2, FANCA, and FANCD2. We have not identified any genetic variants in hereditary GC-associated genes: CDH1, STK11, SMAD4, BMPRIA, APC, MLH1, and others. Our study included patients with sporadic features of GC. The use of recognized criteria (NCCN, Gastric Cancer, Version 2.2022) would increase the number of identified genetic variants in hereditary GC-associated genes. Further research is required to determine the clinical relevance of the genetic variants identified in the current study. Full article
(This article belongs to the Special Issue Next-Generation Sequencing (NGS) Technique and Personalized Medicine)
Show Figures

Figure 1

Back to TopTop