Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,064)

Search Parameters:
Journal = Photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
A Novel PMDI Fiber Optic Hydrophone Incorporating IOC-Based Phase Modulator
Photonics 2023, 10(8), 911; https://doi.org/10.3390/photonics10080911 - 07 Aug 2023
Viewed by 189
Abstract
Fiber-optic hydrophone (FOH) has significant potential in many applications of hydroacoustic sensing and underwater communication. A novel path-matched differential interferometer fiber optic hydrophone (PMDI-FOH) approach incorporating an integrated-optic component (IOC) is presented in this paper. It is presented to meet the demands for [...] Read more.
Fiber-optic hydrophone (FOH) has significant potential in many applications of hydroacoustic sensing and underwater communication. A novel path-matched differential interferometer fiber optic hydrophone (PMDI-FOH) approach incorporating an integrated-optic component (IOC) is presented in this paper. It is presented to meet the demands for high-quality dynamic measurements, which solves the problems with the conventional homodyne detection system’s low modulation frequency. The IOC functions as a phase-generated carrier (PGC) component. The scheme is investigated both in theory and experiments. The theoretical and experimental results verify the effectiveness of the proposed scheme. It achieves a high SNR of up to 20.29 dB demodulations. The proposed system is cost-effective and has excellent potential in building next-generation underwater sensing and communication networks. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

Article
Investigating the Role of Temperature in Laser Assisted Chemical Bath Deposition for ZnO Growth for Photodetector Application
Photonics 2023, 10(8), 910; https://doi.org/10.3390/photonics10080910 - 07 Aug 2023
Viewed by 142
Abstract
ZnO microrods (ZnO-MRs) have unique properties that make them highly attractive for applications such as optoelectronics, electronics, and sensors. This work demonstrates the successful synthesis of high-quality ZnO-MRs using a laser-assisted chemical bath deposition method. The optimal growth temperature for high-quality ZnO-MRs was [...] Read more.
ZnO microrods (ZnO-MRs) have unique properties that make them highly attractive for applications such as optoelectronics, electronics, and sensors. This work demonstrates the successful synthesis of high-quality ZnO-MRs using a laser-assisted chemical bath deposition method. The optimal growth temperature for high-quality ZnO-MRs was found to be 61.10 °C, considerably lower than that required for conventional chemical methods. Various characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy Dispersive X-ray (EDX), and UV-Vis spectrometry, confirmed the structural and optical properties of the synthesized ZnO-MRs. The UV detection potentialities of the fabricated ZnO-MRs were investigated. All samples exhibited good UV detection capabilities with the sample grown at 61.10 °C showing the best performance with fast response and recovery times of 1.260 s and 1.398 s, respectively. These findings hold immense potential for developing more efficient methods for synthesizing ZnO-MRs for use in various applications. Full article
Show Figures

Figure 1

Brief Report
Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV
Photonics 2023, 10(8), 909; https://doi.org/10.3390/photonics10080909 - 07 Aug 2023
Viewed by 241
Abstract
In this study, we report on the ultra-short lifetime of excited intersubband electrons in a 38 Å wide AlGaN/GaN-based quantum well. The rapid decay of these charge carriers occurs due to a resonance between the relevant intersubband transition energy and the size of [...] Read more.
In this study, we report on the ultra-short lifetime of excited intersubband electrons in a 38 Å wide AlGaN/GaN-based quantum well. The rapid decay of these charge carriers occurs due to a resonance between the relevant intersubband transition energy and the size of the GaN-based LO-phonon at 92 meV. Based on the experimentally observed Lorentz-shaped intersubband emission peak with a spectral width of roughly 6 meV (48 cm−1) respecting the Fourier transform limit, a very short lifetime, namely 111 fs, could be calculated. By comparing this lifetime to the existing literature data, our value confirms the potential high-speed capability of III-nitride-based optoelectronics. Full article
(This article belongs to the Special Issue III-V Semiconductors Optoelectronic Materials and Devices)
Show Figures

Figure 1

Article
The Influence of On-Orbit Micro-Vibration on Space Gravitational Wave Detection
Photonics 2023, 10(8), 908; https://doi.org/10.3390/photonics10080908 - 07 Aug 2023
Viewed by 219
Abstract
Large-aperture space telescopes have played an important role in space gravitational wave detection missions. Overcoming the influence of the space environment on interstellar laser distance measurement and realistic high-concentration laser distance measurement is one of the topics that LISA and Taiji are working [...] Read more.
Large-aperture space telescopes have played an important role in space gravitational wave detection missions. Overcoming the influence of the space environment on interstellar laser distance measurement and realistic high-concentration laser distance measurement is one of the topics that LISA and Taiji are working hard on. It includes solar temperature, spatial stress relief, pointing shake and tilt, etc. However, when considering the impact of vibration on the telescope, both LISA and Taiji only consider the resonance impact of vibration on structural parts, which greatly ignores the impact of high-frequency micro-vibration on space ranging. This paper first considers space gravitational wave detection. Then, we establish the heterodyne interference model and demodulation algorithm of the optical phase-locked loop, and then introduce the vibration component for theoretical analysis. The results show that, although the resonance effect of low-frequency vibration on the system structure is avoided in space gravitational wave detection, the influence of high-frequency micro-vibration on heterodyne interference cannot be ignored. At the same time, we quantitatively analyze the influence efficiency of amplitude and frequency; in the premise of small amplitudes, the influence of vibration frequency is related to the frequency of the heterodyne signal, which has important guiding significance in engineering. Full article
(This article belongs to the Special Issue Optical Interferometry)
Show Figures

Figure 1

Article
Non-Paraxial Effects in the Laser Beams Sharply Focused to Skin Revealed by Unidirectional Helmholtz Equation Approximation
Photonics 2023, 10(8), 907; https://doi.org/10.3390/photonics10080907 - 05 Aug 2023
Viewed by 174
Abstract
Laser beams converging at significant focusing angles have diverse applications, including quartz-enhanced photoacoustic spectroscopy, high spatial resolution imaging, and profilometry. Due to the limited applicability of the paraxial approximation, which is valid solely for smooth focusing scenarios, numerical modeling becomes necessary to achieve [...] Read more.
Laser beams converging at significant focusing angles have diverse applications, including quartz-enhanced photoacoustic spectroscopy, high spatial resolution imaging, and profilometry. Due to the limited applicability of the paraxial approximation, which is valid solely for smooth focusing scenarios, numerical modeling becomes necessary to achieve optimal parameter optimization for imaging diagnostic systems that utilize converged laser beams. We introduce a novel methodology for the modeling of laser beams sharply focused on the turbid tissue-like scattering medium by employing the unidirectional Helmholtz equation approximation. The suggested modeling approach takes into account the intricate structure of biological tissues, showcasing its ability to effectively simulate a wide variety of random multi-layered media resembling tissue. By applying this methodology to the Gaussian-shaped laser beam with a parabolic wavefront, the prediction reveals the presence of two hotspots near the focus area. The close-to-maximal intensity hotspot area has a longitudinal size of about 3–5 μm and a transversal size of about 1–2 μm. These values are suitable for estimating spatial resolution in tissue imaging when employing sharply focused laser beams. The simulation also predicts a close-to-maximal intensity hotspot area with approximately 1 μm transversal and longitudinal sizes located just behind the focus distance for Bessel-shaped laser beams with a parabolic wavefront. The results of the simulation suggest that optical imaging methods utilizing laser beams with a wavefront produced by an axicon lens would exhibit a limited spatial resolution. The wavelength employed in the modeling studies to evaluate the sizes of the focus spot is selected within a range typical for optical coherence tomography, offering insights into the limitation of spatial resolution. The key advantage of the unidirectional Helmholtz equation approximation approach over the paraxial approximation lies in its capability to simulate the propagation of a laser beam with a non-parabolic wavefront. Full article
(This article belongs to the Special Issue Polarization Optics in Biomedical Applications)
Show Figures

Figure 1

Article
Fiber Bragg Grating Bonding Characterization under Long-Period Cyclic Loading
Photonics 2023, 10(8), 906; https://doi.org/10.3390/photonics10080906 - 04 Aug 2023
Viewed by 161
Abstract
The Smart Landing Gear system to be developed in the framework of the ANGELA project provides the strain measurements on landing gear structure at landings, and this system should be maintained efficiently under operational conditions. It is intended to assess the relevance of [...] Read more.
The Smart Landing Gear system to be developed in the framework of the ANGELA project provides the strain measurements on landing gear structure at landings, and this system should be maintained efficiently under operational conditions. It is intended to assess the relevance of Fiber Bragg Gratings for in-flight testing. To assess the capabilities of the FBG bonding and to analyze the strain transmission conditions from the host structure to the FBG through the bonding layer during the operational phases of landing gears, a long-period cyclic loading test campaign on the bonding layer itself was performed. The primary objective of this fatigue-like test was to prove the ability of FBG sensors to withstand the operational life-cycle of landing gear while providing the same strain transfer function throughout the entire cycle; the secondary objective was to select the most suitable fiber-coating and bonding agents for this application. This document describes the execution and results of the fatigue-like test, intended as a preparatory test campaign to support the preliminary design activities of the Smart Landing System. Full article
Show Figures

Figure 1

Communication
13.5 μJ, 20 kHz Repetition Rate, Single Frequency Pr3+:YLF Master Oscillator Power Amplifier System
Photonics 2023, 10(8), 903; https://doi.org/10.3390/photonics10080903 - 04 Aug 2023
Viewed by 243
Abstract
This article describes a master oscillator and power amplifier (MOPA) system with a single longitudinal mode (SLM) and high-repetition-frequency Pr3+:YLF active medium that was end-pumped by two 444 nm laser diodes. The Pr3+:YLF MOPA laser system produced a maximum [...] Read more.
This article describes a master oscillator and power amplifier (MOPA) system with a single longitudinal mode (SLM) and high-repetition-frequency Pr3+:YLF active medium that was end-pumped by two 444 nm laser diodes. The Pr3+:YLF MOPA laser system produced a maximum pulse energy of 13.5 μJ with a pulse width of 130.2 ns at a pulse repetition frequency of 20 kHz, translating to a peak power of around 103.7 W. The Pr3+:YLF MOPA laser system’s output wavelength was 639.7 nm, and the line-width of its laser spectra was roughly 168 MHz. Additionally, at the highest output level, the laser beam quality did not decrease much due to amplification. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Article
Optical Trapping of Chiral Particles by Dual Laser Beams
Photonics 2023, 10(8), 905; https://doi.org/10.3390/photonics10080905 - 04 Aug 2023
Viewed by 256
Abstract
In this paper, an analytical method for studying the radiation force (RF) of chiral spheres generated by dual laser beams is presented under the framework of generalized Lorenz–Mie theory (GLMT). According to the coordinate transformation relations, the arbitrarily incident laser beam is represented [...] Read more.
In this paper, an analytical method for studying the radiation force (RF) of chiral spheres generated by dual laser beams is presented under the framework of generalized Lorenz–Mie theory (GLMT). According to the coordinate transformation relations, the arbitrarily incident laser beam is represented by vector spherical harmonic functions (VSHFs) in the sphere system. The entire induced field expression coefficients of dual laser beams can be obtained by superposition of each illuminated field. Based on the momentum conservation theory, the concrete expression of lateral and axial RF on chiral sphere is derived. The current theories are shown to be valid by comparison with the existing reference. To investigate the stable capture state of chiral sphere, the influences of the corresponding parameters of chiral particles and dual laser beams on the trapping and manipulation are investigated in detail. The analytical study on the RF of dual laser beams on chiral particles is an efficient method for improving optical tweezers technology and can become an encouraging approach to realize the high accuracy operation of chiral particles. Full article
Show Figures

Figure 1

Review
A Review on the Roles of Photoacoustic Imaging for Conventional and Novel Clinical Diagnostic Applications
Photonics 2023, 10(8), 904; https://doi.org/10.3390/photonics10080904 - 04 Aug 2023
Viewed by 355
Abstract
Photoacoustic imaging is a promising medical imaging modality that enables the visualization of molecular functional and morphological information of biological tissues. Its clinical potential has been widely investigated for assessing and diagnosing various diseases. Currently, several research groups are developing photoacoustic imaging systems [...] Read more.
Photoacoustic imaging is a promising medical imaging modality that enables the visualization of molecular functional and morphological information of biological tissues. Its clinical potential has been widely investigated for assessing and diagnosing various diseases. Currently, several research groups are developing photoacoustic imaging systems for translation from the laboratory to the clinic. In particular, the integration of photoacoustic imaging into existing diagnostic ultrasound applications, such as cancer diagnosis, has shown promising results. Additionally, recent research has explored the application of photoacoustic imaging for novel clinical uses. In this review paper, recent trials of photoacoustic imaging in both conventional and novel clinical applications are summarized and evaluated. Additionally, current limitations and future directions of photoacoustic imaging for successful translation into the clinical world are discussed. The aim of this review is to provide a comprehensive overview of the recent advancements in photoacoustic imaging and highlight its potential for clinical diagnosis and treatment. It is hoped that this review will contribute to the development of improved diagnostic and therapeutic approaches for a wide range of diseases using photoacoustic imaging. Full article
(This article belongs to the Special Issue Advances of Photoacoustic Tomography)
Show Figures

Figure 1

Article
Density-Functional Study of the Si/SiO2 Interfaces in Short-Period Superlattices: Vibrational States and Raman Spectra
Photonics 2023, 10(8), 902; https://doi.org/10.3390/photonics10080902 - 04 Aug 2023
Viewed by 328
Abstract
Raman spectroscopy has proven its effectiveness as a highly informative and sensitive method for the nondestructive analysis of layered nanostructures and their interfaces. However, there is a lack of information concerning the characteristic phonon modes and their activity in Si/SiO2 nanostructures. In [...] Read more.
Raman spectroscopy has proven its effectiveness as a highly informative and sensitive method for the nondestructive analysis of layered nanostructures and their interfaces. However, there is a lack of information concerning the characteristic phonon modes and their activity in Si/SiO2 nanostructures. In order to overcome this problem, the phonon states and Raman spectra of several Si/SiO2 superlattices (SL) with layer thicknesses varied within 0.5–2 nm are studied using DFT-based computer modeling. Two types of structures with different interfaces between crystalline silicon and SiO2 cristobalite were studied. A relationship between the phonon states of heterosystems and the phonon modes of the initial crystals was established. Estimates of the parameters of deformation potentials are obtained, with the help of which the shifts of phonon frequencies caused by elastic strains in the materials of the SL layers are interpreted. The dependence of intense Raman lines on the SL structure has been studied. Several ways have been proposed to use this information, both for identifying the type of interface and for estimating the structural parameters. The obtained information will be useful for the spectroscopic characterization of the silicon/oxide interfaces. Full article
Show Figures

Figure 1

Article
Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning
Photonics 2023, 10(8), 901; https://doi.org/10.3390/photonics10080901 - 03 Aug 2023
Viewed by 239
Abstract
In this study, a fiber coupled high power side-pumped Nd:YAG laser system for laser cleaning is presented. Based on the two-rod structure and two stages amplifiers, the maximum average output power of 783 W with corresponding pulse energy of 52 mJ at 15 [...] Read more.
In this study, a fiber coupled high power side-pumped Nd:YAG laser system for laser cleaning is presented. Based on the two-rod structure and two stages amplifiers, the maximum average output power of 783 W with corresponding pulse energy of 52 mJ at 15 kHz has been achieved. The fiber coupling efficiencies after the master oscillator, one stage amplifier and two stages amplifiers reach to 99%, 98.3% and 94%, respectively. A laser cleaning machine prototype composed of the master oscillator and one stage amplifier with an average output power of greater than 500 W has been developed and achieved better nondestructive cleaning effect for thermal control coating removal compared with commercial fiber laser cleaning machines. This study provides a new method for developing high power laser sources for nondestructive laser cleaning equipment. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Communication
Disturbance-Observer-Based LQR Tracking Control for Electro-Optical System
Photonics 2023, 10(8), 900; https://doi.org/10.3390/photonics10080900 - 03 Aug 2023
Viewed by 246
Abstract
To improve the dynamic property and the disturbance suppression ability of an electro-optical tracking system, this paper presents a disturbance-observer-based LQR tracking control method. The disturbance-observer-based robust controller is composed of three parts: one is the LQR tracking controller, one is the reference [...] Read more.
To improve the dynamic property and the disturbance suppression ability of an electro-optical tracking system, this paper presents a disturbance-observer-based LQR tracking control method. The disturbance-observer-based robust controller is composed of three parts: one is the LQR tracking controller, one is the reference model controller and the other is a compensatory controller designed with the output of the disturbance observer. The uncertainty and disturbances are considered in the controller design. By Lyapunov stability theory and linear matrix inequality (LMI) technique, the sufficient conditions for observer gain and controller gain of the tracking reference model of the electro-optical system are given. Simulation and experimental results show that the proposed method in this paper not only improved the disturbance suppression ability of the electro-optical tracking system but also improved the dynamic property of the electro-optical tracking system, such as rise time, settling time and system overshoot. Specially, compared with other methods in this paper, the tracking accuracy and the disturbance suppression ability of the proposed method are about two to three times higher. The method presented in this paper has important reference value in the field of electro-optical system applications. But, with the development of electro-optical system applications, the tracking accuracy and disturbance suppression ability of the proposed method cannot meet the actual requirements of an electro-optical system. The next step of this paper will consider a variety of practical requirements, such as the controller saturation problem and tracking reference target with strong maneuverability, and further optimize the proposed method. Full article
(This article belongs to the Special Issue Advances in Photoelectric Tracking Systems)
Show Figures

Figure 1

Article
A High-Sensitivity Bimetallic Grating-Coupled Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials
Photonics 2023, 10(8), 899; https://doi.org/10.3390/photonics10080899 - 03 Aug 2023
Viewed by 234
Abstract
Optical biosensors based on grating-coupled surface plasmon resonance (GCSPR) technology are an important research topic in the field of bio-photonics. This paper presents a high-performance and high-sensitivity nanostructured bimetallic GCSPR sensor based on two-dimensional materials. When designing the sensor, the sensitivity, full width [...] Read more.
Optical biosensors based on grating-coupled surface plasmon resonance (GCSPR) technology are an important research topic in the field of bio-photonics. This paper presents a high-performance and high-sensitivity nanostructured bimetallic GCSPR sensor based on two-dimensional materials. When designing the sensor, the sensitivity, full width at half peak (FWHM) and dip strength of the absorption peak (DS) were considered comprehensively, and the comprehensive evaluation parameter FOM+ is defined by making improvements on the basis of figure of merit (FOM). The performance of the sensor can be judged more comprehensively. The performance of the sensor was further improved by optimizing the structure of the sensor. An ultra-thin gold layer was added on the surface of the silver-based GCSPR sensor, which solves the problem of the easy oxidation of silver metal. We tried to coat graphene oxide two-dimensional nanomaterials on the surface of the bimetallic sensor, and the sensitivity and FOM+ of the sensor reached 350 deg/RIU and 473.23, respectively. This is a great improvement compared with the GCSPR sensor in a previous study, and it can be improved at least 74.7%. This sensor can measure a variety of biological molecules and biological cells with high sensitivity and performance by detecting the change in the refractive index of the solution to be measured. Full article
Show Figures

Figure 1

Communication
Anisotropic Purcell Effect and Quantum Interference in Fractal Aggregates of Nanoparticles
Photonics 2023, 10(8), 898; https://doi.org/10.3390/photonics10080898 - 03 Aug 2023
Viewed by 245
Abstract
We study theoretically the emergence of an anisotropic Purcell factor in random two-dimensional fractal aggregates of nanoparticles. These nanoparticles can either be metallic nanoparticles made of silver, which exhibit surface plasmon resonances, or high-index dielectric nanoparticles like silicon, which possess optical Mie resonances. [...] Read more.
We study theoretically the emergence of an anisotropic Purcell factor in random two-dimensional fractal aggregates of nanoparticles. These nanoparticles can either be metallic nanoparticles made of silver, which exhibit surface plasmon resonances, or high-index dielectric nanoparticles like silicon, which possess optical Mie resonances. To calculate the spontaneous emission rates of a quantum emitter, we utilize the electromagnetic Green’s tensor within the framework of the coupled-dipole method. Our findings reveal that the Purcell factor exhibits spatial variations, with certain regions, referred to as hot spots, displaying high values for dipoles oriented within the plane of the fractal aggregate, while dipoles oriented vertically to the aggregate have values close to unity. This anisotropy in the Purcell factor leads to significant quantum interference effects in the spontaneous emission paths of multi-level quantum emitters. As a consequence of this quantum interference, we demonstrate the occurrence of population trapping in a V-type quantum emitter embedded within a fractal aggregate of nanoparticles which cannot otherwise take place if the emitter is placed in vacuum. Full article
(This article belongs to the Special Issue Optical Interferometry)
Show Figures

Figure 1

Communication
Compact Design for Bi-Polarization Quantum Routers on SOI Platform
Photonics 2023, 10(8), 897; https://doi.org/10.3390/photonics10080897 - 03 Aug 2023
Viewed by 248
Abstract
An ultra-compact optical quantum router (QR) consisting of a Mach–Zehnder interferometer (MZI) and waveguide tapers is proposed and numerically simulated, using silicon-on-insulator (SOI). The interferometer is designed to work at the center wavelength of 1550 nm with visibilities of 99.65% and 98.80% for [...] Read more.
An ultra-compact optical quantum router (QR) consisting of a Mach–Zehnder interferometer (MZI) and waveguide tapers is proposed and numerically simulated, using silicon-on-insulator (SOI). The interferometer is designed to work at the center wavelength of 1550 nm with visibilities of 99.65% and 98.80% for TE and TM polarizations, respectively. Using the principle of phase compensation and self-image, the length of the waveguide tapers is shortened by an order of magnitude with the transmission above 95% for both TE and TM polarizations. Furthermore, polarization beam splitters (PBS) with an ultra-compact footprint of 1.4 × 10.4 μm2 with transmissions of 98% for bi-polarizations are achieved by introducing anisotropic metamaterials. The simulated results indicate that the interferometer facilitates low loss, a broad operating spectral range, and a large tolerance to size variation in fabrications. The optical switch possesses the routing function while maintaining the polarization states, which promises to pave the point-to-point BB84 protocol into applications of network-based quantum communication. Full article
(This article belongs to the Special Issue Recent Advances in Micro-Nano Optics)
Show Figures

Figure 1

Back to TopTop