Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (200)

Search Parameters:
Journal = QuBS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes
Quantum Beam Sci. 2023, 7(3), 25; https://doi.org/10.3390/qubs7030025 - 07 Aug 2023
Viewed by 263
Abstract
The chemical composition and stoichiometry of vertically aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-CNTs) were studied by photoelectron spectroscopy using laboratory and synchrotron X-ray sources. We performed careful deconvolution of high-resolution core-level spectra to quantify pyridine/pyrrole-like defects in N-CNTs, which are a [...] Read more.
The chemical composition and stoichiometry of vertically aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-CNTs) were studied by photoelectron spectroscopy using laboratory and synchrotron X-ray sources. We performed careful deconvolution of high-resolution core-level spectra to quantify pyridine/pyrrole-like defects in N-CNTs, which are a key factor in the efficiency of the piezoelectric response for this material. It is shown that the XPS method makes it possible to estimate the concentration and type of nitrogen incorporation (qualitatively and quantitatively) in the “N-CNT/Mo electrode” system using both synchrotron and laboratory sources. The obtained results allow us to study the effect of the nickel catalytic layer thickness on the concentration of pyridine/pyrrole-like nitrogen and piezoelectric response in the nanotubes. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

Article
Application of Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of the Chemical Composition of Historical Lead Silicate Glasses
Quantum Beam Sci. 2023, 7(3), 24; https://doi.org/10.3390/qubs7030024 - 02 Aug 2023
Viewed by 238
Abstract
The study of the chemical composition of historical glasses is widely used in archaeometry. The results of such analyses provide information on the probable date, place, and technological features of their production. Over time, a weathered layer may form on the surface of [...] Read more.
The study of the chemical composition of historical glasses is widely used in archaeometry. The results of such analyses provide information on the probable date, place, and technological features of their production. Over time, a weathered layer may form on the surface of the glass, which differs in composition from the original one. To determine the initial composition using conventional methods (for example, X-ray fluorescence spectroscopy), the weathered layer should be removed. For historical objects, such manipulation is unacceptable and should be minimized. One of the methods for analyzing the chemical composition with minimal damage to a sample is laser-induced breakdown spectroscopy. The aim of this work was to develop a LIBS method, which makes it possible to perform a quantitative analysis of lead silicate glasses, including glasses containing a weathered layer. Reference glasses with a variable content of potassium, silicon, and lead oxides were synthesized, and based on the LIBS spectra, a calibration dependence was obtained that made it possible to measure the concentration of lead and potassium oxides in glasses within 70–85 and 5–20 wt%, respectively. The method was applied to analyze the composition of the glaze on a historic glazed tile from the burial church in the Euphrosinian monastery in Polotsk (the second half of the 12th century AD). The crater formed with the laser beam on the glazed surface was about 200 microns. Such damage is negligible compared to the total surface area of the tile (~10 cm2). The thickness of the weathered glaze layer was 70 microns, which was determined using variation in lead oxide content. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

Article
Scanning Three-Dimensional X-ray Diffraction Microscopy for Carbon Steels
Quantum Beam Sci. 2023, 7(3), 23; https://doi.org/10.3390/qubs7030023 - 14 Jul 2023
Viewed by 278
Abstract
Plastically deformed low-carbon steel has been analyzed by nondestructive three-dimensional orientation and strain mapping using scanning three-dimensional X-ray diffraction microscopy (S3DXRD). However, the application of S3DXRD is limited to single-phase alloys. In this study, we propose a modified S3DXRD analysis for dual-phase alloys, [...] Read more.
Plastically deformed low-carbon steel has been analyzed by nondestructive three-dimensional orientation and strain mapping using scanning three-dimensional X-ray diffraction microscopy (S3DXRD). However, the application of S3DXRD is limited to single-phase alloys. In this study, we propose a modified S3DXRD analysis for dual-phase alloys, such as ferrite–pearlite carbon steel, which is composed of grains detectable as diffraction spots and a phase undetectable as diffraction spots. We performed validation experiments for ferrite–pearlite carbon steel with different pearlite fractions, in which the ferrite grains and the pearlite corresponded to the detectable grains and an undetectable phase, respectively. The regions of pearlite appeared more remarkably in orientation maps of the ferrite grains obtained from the carbon steel samples than that of the single-phase low-carbon steel and increased with the increase in the carbon concentration. The fractions of the detectable grains and the undetectable phase were determined with an uncertainty of 15%–20%. These results indicate that the proposed modified analysis is qualitatively valid for dual-phase alloys comprising detectable grains and an undetectable phase. Full article
Show Figures

Figure 1

Article
Laser-Induced Breakdown Spectroscopy and X-ray Fluorescence Analysis of Bronze Objects from the Late Bronze Age Baley Settlement, Bulgaria
Quantum Beam Sci. 2023, 7(3), 22; https://doi.org/10.3390/qubs7030022 - 13 Jul 2023
Viewed by 252
Abstract
In the presented work, a total of 60 bronze artefacts from the prehistoric settlement of Baley, Bulgaria were analyzed by means of laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence spectroscopy (XRF). The archaeological finds were excavated from three levels, with a time span [...] Read more.
In the presented work, a total of 60 bronze artefacts from the prehistoric settlement of Baley, Bulgaria were analyzed by means of laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence spectroscopy (XRF). The archaeological finds were excavated from three levels, with a time span from the 15th century BC to the first half of the 11th century BC. The obtained analytical information was used for quantitative estimation of the amount of tin, lead and arsenic, which determine the mechanical properties of the alloy and the manufacturing technology. Based on the estimated quantities of these elements, a chemometric statistical analysis (principal component analysis—PCA) was performed to classify and divide the samples into separate groups according to the production dating. The data obtained in this study can be used for comparison with the elemental content in deposits from other settlements of this period. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

Article
Magnetic Heating Effect for Quarter-Wave Resonator (QWR) Superconducting Cavities
Quantum Beam Sci. 2023, 7(3), 21; https://doi.org/10.3390/qubs7030021 - 03 Jul 2023
Viewed by 295
Abstract
In this paper, the magnetic heating effect of the superconducting quarter-wave resonator (QWR) cavities is investigated, and the Q slopes of the superconducting cavities are measured with an increasing accelerating field. Bardeen–Cooper–Schrieffer (BCS) resistance is calculated for the zero-temperature limit. The vertical test [...] Read more.
In this paper, the magnetic heating effect of the superconducting quarter-wave resonator (QWR) cavities is investigated, and the Q slopes of the superconducting cavities are measured with an increasing accelerating field. Bardeen–Cooper–Schrieffer (BCS) resistance is calculated for the zero-temperature limit. The vertical test is shown for the performance test of the QWR cavities. The parameters for the QWR cavity are presented. The Q slopes are measured as a function of an accelerating electric field at 4.2 K. The surface resistance of the superconducting cavity increases with an increasing peak magnetic field. The magnetic defects degrade the quality factor. From the magnetic degradation, we determine the magnetic moments of the superconducting cavities. All quarter-wave resonator (QWR) cryomodules are installed in the tunnel, and beam commissioning is performed successfully. Full article
(This article belongs to the Special Issue Quantum Beam and Its Applications for Quantum Technologies)
Show Figures

Figure 1

Review
Review of Current Software for Analyzing Total X-ray Scattering Data from Liquids
Quantum Beam Sci. 2023, 7(2), 20; https://doi.org/10.3390/qubs7020020 - 20 Jun 2023
Viewed by 981
Abstract
The popularity of the pair distribution function (PDF) analysis of X-ray total scattering data has steadily grown as access to ex situ synchrotron data has expanded. Due to the broadening of the PDF user community, there is a growing demand for software that [...] Read more.
The popularity of the pair distribution function (PDF) analysis of X-ray total scattering data has steadily grown as access to ex situ synchrotron data has expanded. Due to the broadening of the PDF user community, there is a growing demand for software that can be used to extract PDFs and is accessible to non-expert users. While user-friendly options have been developed over the past decade for fast, streamlined data analysis, care must be taken in both processing the data and understanding any limitations, especially in the case of liquids. In this review, the same scattering data are analyzed using different total X-ray scattering software, in order to compare the accuracy of the extracted structure factors and associated pair distribution functions. The goal is to assess the best practices for extracting the most accurate liquid data for each software package. The importance of absolute normalization and the application of the most appropriate corrections are emphasized via quantitative comparisons between liquid sulfur and water. Additionally, an awareness of the competing conventions used to define the PDF in crystallography and liquids/glasses is crucial for both the downstream analyses of the data and a comparison with the previous results in the literature. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

Article
Combined Use of Ultrasonic and Electromagnetic Fields for the Study of Bonding Mechanisms between Dexamethasone Disodium Phosphate Molecules
Quantum Beam Sci. 2023, 7(2), 19; https://doi.org/10.3390/qubs7020019 - 05 Jun 2023
Viewed by 523
Abstract
We have investigated the ultrasonically induced birefringence traces of aqueous solutions of dexamethasone disodium phosphate, a derivative of hydrocortisone (cortisol). The stationary birefringence and the transient built-up and decay relaxation processes were studied as a function of solution concentration, ultrasound frequency and intensity, [...] Read more.
We have investigated the ultrasonically induced birefringence traces of aqueous solutions of dexamethasone disodium phosphate, a derivative of hydrocortisone (cortisol). The stationary birefringence and the transient built-up and decay relaxation processes were studied as a function of solution concentration, ultrasound frequency and intensity, as well as a function of temperature. The results were analyzed in view of structural peculiarities of the system in an effort to gain further insights into the molecular relaxation dynamics and the proposed self-association process occurring in the system. The detected ultrasonically induced birefringence relaxation is motivated by the rotational diffusion of dexamethasone disodium phosphate aggregates due to self-association depending on the solution concentration. The observed relaxation mechanism is directly linked to the hydrodynamic size of the acoustic field-induced self-assembly. The systematic analysis of the transient birefringence signals caused by the applied ultrasonic field allowed us to evaluate the interplay between permanent and induced dipoles with changing concentration, temperature, and ultrasound properties. The birefringence traces are adequately fitted with a stretched exponential law indicating the polydispersive nature of the self-aggregated molecular structures. The obtained results are described in the light of recent studies performed on this system. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

Article
Supervised Machine Learning for Refractive Index Structure Parameter Modeling
Quantum Beam Sci. 2023, 7(2), 18; https://doi.org/10.3390/qubs7020018 - 01 Jun 2023
Viewed by 515
Abstract
The Hellenic Naval Academy (HNA) reports the latest results from a medium-range, near-maritime, free-space laser-communications-testing facility, between the lighthouse of Psitalia Island and the academy’s laboratory building. The FSO link is established within the premises of Piraeus port, with a path length of [...] Read more.
The Hellenic Naval Academy (HNA) reports the latest results from a medium-range, near-maritime, free-space laser-communications-testing facility, between the lighthouse of Psitalia Island and the academy’s laboratory building. The FSO link is established within the premises of Piraeus port, with a path length of 2958 m and an average altitude of 35 m, mainly above water. Recently, the facility was upgraded through the addition of a BLS450 scintillometer, which is co-located with the MRV TS5000/155 FSO system and a WS-2000 weather station. This paper presents the preliminary optical turbulence measurements, collected from 24 to 31 of May 2022, alongside the macroscopic meteorological parameters. Four machine-learning algorithms (random forest (RF), gradient boosting regressor (GBR), single layer (ANN), and deep neural network (DNN)) were utilized for refractive-index-structural-parameter regression modeling. Additionally, another DNN was used to classify the strength level of the optical turbulence, as either strong or weak. The results showed very good prediction accuracy for all the models. Specifically, the ANN algorithm resulted in an R-squared of 0.896 and a mean square error (MSE) of 0.0834; the RF algorithm also gave a highly acceptable R-squared of 0.865 and a root mean square error (RMSE) of 0.241. The Gradient Boosting Regressor (GBR) resulted in an R-squared of 0.851 and a RMSE of 0.252 and, finally, the DNN algorithm resulted in an R-squared of 0.79 and a RMSE of 0.088. The DNN-turbulence-strength-classification model exhibited a very acceptable classification performance, given the highly variability of our target value (Cn2), since we observed a predictive accuracy of 87% with the model. Full article
(This article belongs to the Special Issue Laser-Assisted Facilities)
Show Figures

Figure 1

Article
Neutralization of the Surface Charge of an Insulated Target under the Interaction of High-Energy Metal Ion Beams
Quantum Beam Sci. 2023, 7(2), 17; https://doi.org/10.3390/qubs7020017 - 29 May 2023
Viewed by 469
Abstract
The interaction of ion beams with dielectric materials is an urgent problem, both from the point of view of practical application in ion implantation processes and for understanding the fundamental processes of charge compensation and the effective interaction of beam ions with a [...] Read more.
The interaction of ion beams with dielectric materials is an urgent problem, both from the point of view of practical application in ion implantation processes and for understanding the fundamental processes of charge compensation and the effective interaction of beam ions with a target surface. This paper presents the results of studies of the processes of compensation of the surface charge of an insulated collector upon interaction with a beam of metal ions with energies up to 50–150 keV. At low pressure (about 10−6 torr), removing the collector from the region of extraction and beam formation makes it possible to reduce the floating potential to a value of 5–10% of the total accelerating voltage. This phenomenon allows for the efficient implantation of metal ions onto the surface of alumina ceramics. We have shown that the sheet resistance of dielectric targets depends on the material of the implanted metal ions and decreases with an increase in the implantation dose by 3–4 orders of magnitude compared with the initial value at the level of 1012 Ω per square. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

Article
Scanning Three-Dimensional X-ray Diffraction Microscopy with a Spiral Slit
Quantum Beam Sci. 2023, 7(2), 16; https://doi.org/10.3390/qubs7020016 - 29 May 2023
Viewed by 520
Abstract
Recently, nondestructive evaluation of the stresses localized in grains was achieved for plastically deformed low-carbon steel using scanning three-dimensional X-ray diffraction (S3DXRD) microscopy with a conical slit. However, applicable metals and alloys were restricted to a single phase and evaluated stress was underestimated [...] Read more.
Recently, nondestructive evaluation of the stresses localized in grains was achieved for plastically deformed low-carbon steel using scanning three-dimensional X-ray diffraction (S3DXRD) microscopy with a conical slit. However, applicable metals and alloys were restricted to a single phase and evaluated stress was underestimated due to the fixed Bragg angles of the conical slit optimized to αFe. We herein propose S3DXRD with a rotating spiral slit adaptable to various metals and alloys and accurate stress evaluation with sweeping Bragg angles. Validation experiments with a 50-keV X-ray microbeam were conducted for low-carbon steel as a body-centered cubic (BCC) phase and pure Cu as a face-centered cubic (FCC) phase. As a result of orientation mapping, polygonal grain shapes and clear grain boundaries were observed for both BCC and FCC metals. Thus, it was demonstrated that S3DXRD with a rotating spiral slit will be applicable to various metals and alloys, multiphase alloys, and accurate stress evaluation using a X-ray microbeam with a higher photon energy within an energy range determined by X-ray focusing optics. In principle, this implies that S3DXRD becomes applicable to larger and thicker metal and alloy samples instead of current miniature test or wire-shaped samples if a higher-energy X-ray microbeam is available. Full article
Show Figures

Figure 1

Article
Accuracy of Measuring Rebar Strain in Concrete Using a Diffractometer for Residual Stress Analysis
Quantum Beam Sci. 2023, 7(2), 15; https://doi.org/10.3390/qubs7020015 - 10 May 2023
Viewed by 867
Abstract
Neutron diffraction is a noncontact method that can measure the rebar strain inside concrete. In this method, rebar strain and stress are calculated using the diffraction profile of neutrons irradiated during a specific time period. In general, measurement accuracy improves with the length [...] Read more.
Neutron diffraction is a noncontact method that can measure the rebar strain inside concrete. In this method, rebar strain and stress are calculated using the diffraction profile of neutrons irradiated during a specific time period. In general, measurement accuracy improves with the length of the measurement time. However, in previous studies, the measurement time was determined empirically, which makes the accuracy and reliability of the measurement results unclear. In this study, the relationship between the measurement time and the measurement standard deviation was examined for reinforced concrete specimens under different conditions. The aim was to clarify the accuracy of the measurement of rebar stress using the neutron diffraction method. It was found that if the optical setup of the neutron diffractometer and the conditions of the specimen are the same, there is a unique relationship between the diffraction intensity and the rebar stress standard deviation. Furthermore, using this unique relationship, this paper proposes a method for determining the measurement time from the allowable accuracy of the rebar stress, which ensures the accuracy of the neutron diffraction method. Full article
Show Figures

Figure 1

Article
Relationship between Internal Stress Distribution and Microstructure in a Suspension-Sprayed Thermal Barrier Coating with a Columnar Structure
Quantum Beam Sci. 2023, 7(2), 14; https://doi.org/10.3390/qubs7020014 - 03 May 2023
Viewed by 787
Abstract
The suspension plasma spray (SPS) method is expected to become a novel coating method because it can achieve various microstructures using a suspension with submicron spray particles. Thermal barrier coatings (TBCs) with a columnar structure, which might achieve high strain tolerance, can be [...] Read more.
The suspension plasma spray (SPS) method is expected to become a novel coating method because it can achieve various microstructures using a suspension with submicron spray particles. Thermal barrier coatings (TBCs) with a columnar structure, which might achieve high strain tolerance, can be obtained using the SPS technique. This study evaluated the internal stress distribution of the suspension-plasma-sprayed thermal barrier coating (SPS-TBC) with different columnar structures using hybrid measurement using high-energy synchrotron X-ray diffraction analysis and laboratory low-energy X-rays. The relationship between the microstructure and the internal stress distribution of the SPS-TBC was discussed on the basis of the experimental results. In addition, the in-plane internal stress was decreased by decreasing the column diameter. The thin columnar microstructure of the SPS-TBC has superior strain tolerance. The internal stresses in the SPS-TBC are periodic decrements caused by stress relaxation in porous layers in its column. Full article
Show Figures

Figure 1

Article
Combining XRF, Multispectral Imaging and SEM/EDS to Characterize a Contemporary Painting
Quantum Beam Sci. 2023, 7(2), 13; https://doi.org/10.3390/qubs7020013 - 20 Apr 2023
Viewed by 767
Abstract
Diagnostic analyses on a contemporary painting on canvas were performed with X-ray fluorescence (XRF), multispectral imaging and scanning electron microscope/energy dispersive spectroscopy (SEM/EDS). The results of each method provided complementary information to deepen the knowledge of the pictorial technique. Multispectral imaging provided insight [...] Read more.
Diagnostic analyses on a contemporary painting on canvas were performed with X-ray fluorescence (XRF), multispectral imaging and scanning electron microscope/energy dispersive spectroscopy (SEM/EDS). The results of each method provided complementary information to deepen the knowledge of the pictorial technique. Multispectral imaging provided insight into the topmost layers. XRF analysis made it possible to characterize the chemical composition of some materials and pigments used by the artist. Additional information such as that relating to canvas preparation emerged with the SEM/EDS technique. The results reveal (i) the use of pre-treated industrial canvas; (ii) the preparatory layer consists of plaster covered with a primer with titanium white, zinc and lithopone; (iii) a layer of cadmium yellow ground was inserted to give depth and three-dimensionality to the painting; (iv) the absence of underlying design; (v) the characterized pigments are all contemporary and (vi) a fixative spray covers the paint. Full article
Show Figures

Figure 1

Article
Irradiation Temperature Dependence of Shape Elongation of Metal Nanoparticles in Silica: Counterevidence to Ion Hammering Related Scenario
Quantum Beam Sci. 2023, 7(2), 12; https://doi.org/10.3390/qubs7020012 - 07 Apr 2023
Viewed by 812
Abstract
Irradiation temperature (IT) dependence of the elongation efficiency of vanadium nanoparticles (NPs) in SiO2 was evaluated: The samples were irradiated with 120 MeV Ag9+ ions to a fluence of 1.0 × 1014 ions/cm2 each at ITs of 300, 433, [...] Read more.
Irradiation temperature (IT) dependence of the elongation efficiency of vanadium nanoparticles (NPs) in SiO2 was evaluated: The samples were irradiated with 120 MeV Ag9+ ions to a fluence of 1.0 × 1014 ions/cm2 each at ITs of 300, 433, 515, and 591 K, while the measurements were performed at room temperature. The vanadium was selected for the NP species because of the highest bulk m.p. of 1910 °C (2183 K) among all the species of the elemental metal NPs in which the shape elongation was observed. The highest m.p. could contribute negligible size changes of NPs against inevitable exposure to high temperatures for the IT dependence measurements. The elongation of V NPs was evaluated qualitatively by transmission electron microscopy (TEM) and quantitatively by optical linear dichroism (OLD) spectroscopy. The electron microscopy studies showed a pronounced elongation of NPs with ion irradiation at the elevated temperatures. The OLD signal was almost constant, or even slightly increased with increasing the IT from 300 to 591 K. This IT dependence provides a striking contrast to that of the ion hammering (IH) effect, which predicts a steep decrease with increasing IT. Combined with the other two counterevidence previously reported, the IH-related effect is excluded from the origin of the shape elongation of metal NPs in SiO2. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2022)
Show Figures

Figure 1

Article
The Quantum Regime Operation of Beam Splitters and Interference Filters
Quantum Beam Sci. 2023, 7(2), 11; https://doi.org/10.3390/qubs7020011 - 02 Apr 2023
Viewed by 784
Abstract
The presence of quantum Rayleigh scattering, or spontaneous emission, inside a dielectric medium such as a beam splitter or an interferometric filter prevents a single photon from propagating in a straight line. Modelling a beam splitter by means of a unitary transformation is [...] Read more.
The presence of quantum Rayleigh scattering, or spontaneous emission, inside a dielectric medium such as a beam splitter or an interferometric filter prevents a single photon from propagating in a straight line. Modelling a beam splitter by means of a unitary transformation is physically meaningless because of the loss of photons. Additional missing elements from the conventional theory are the quantum Rayleigh-stimulated emission, which can form groups of photons of the same frequency, and the unavoidable parametric amplification of single photons in the original parame-tric crystal. An interference filter disturbs, through multiple internal reflections, the original stream of single photons, thereby confirming the existence of groups of photons being spread out to lengthen the coherence time. The approach of modelling individual, single measurements with probability amplitudes of a statistical ensemble leads to counterintuitive explanations of the experimental outcomes and should be replaced with pure states describing instantaneous measurements whose values are afterwards averaged. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

Back to TopTop