Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,035)

Search Parameters:
Journal = Gels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Alleviating Effect of a Magnetite (Fe3O4) Nanogel against Waterborne-Lead-Induced Physiological Disturbances, Histopathological Changes, and Lead Bioaccumulation in African Catfish
Gels 2023, 9(8), 641; https://doi.org/10.3390/gels9080641 - 08 Aug 2023
Abstract
Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne [...] Read more.
Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L−1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L−1 of MNG in water and 69.30 mg L−1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption)
Show Figures

Figure 1

Article
Xanthan-Gum/Pluronic-F-127-Based-Drug-Loaded Polymeric Hydrogels Synthesized by Free Radical Polymerization Technique for Management of Attention-Deficit/Hyperactivity Disorder
Gels 2023, 9(8), 640; https://doi.org/10.3390/gels9080640 - 08 Aug 2023
Viewed by 108
Abstract
Smart and intelligent xanthan gum/pluronic F-127 hydrogels were fabricated for the controlled delivery of atomoxetine HCl. Different parameters such as DSC, TGA, FTIR, XRD, SEM, drug loading, porosity, swelling index, drug release, and kinetics modeling were appraised for the prepared matrices of hydrogels. [...] Read more.
Smart and intelligent xanthan gum/pluronic F-127 hydrogels were fabricated for the controlled delivery of atomoxetine HCl. Different parameters such as DSC, TGA, FTIR, XRD, SEM, drug loading, porosity, swelling index, drug release, and kinetics modeling were appraised for the prepared matrices of hydrogels. FTIR confirmed the successful synthesis of the hydrogel, while TGA and DSC analysis indicated that the thermal stability of the reagents was improved after the polymerization technique. SEM revealed the hard surface of the hydrogel, while XRD indicated a reduction in crystallinity of the reagents. High gel fraction was achieved with high incorporated contents of the polymers and the monomer. An increase in porosity, drug loading, swelling, and drug release was observed with the increase in the concentrations of xanthan gum and acrylic acid, whereas Pluronic F-127 showed the opposite effect. A negligible swelling index was shown at pH 1.2 and 4.6 while greater swelling was observed at pH 7.4, indicating a pH-responsive nature of the designed hydrogels. Furthermore, a higher drug release was found at pH 7.4 compared to pH 1.2 and 4.6, respectively. The first kinetics order was followed by the prepared hydrogel formulations. Thus, it is signified from the discussion that smart xanthan gum/pluronic F-127 hydrogels have the potential to control the release of the atomoxetine HCl in the colon for an extended period of time. Full article
(This article belongs to the Special Issue Advances in Smart and Tough Hydrogels)
Show Figures

Figure 1

Article
3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation
Gels 2023, 9(8), 637; https://doi.org/10.3390/gels9080637 - 08 Aug 2023
Viewed by 117
Abstract
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, [...] Read more.
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds’ ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications. Full article
(This article belongs to the Special Issue Engineering Hydrogel for Biomedical Applications)
Show Figures

Figure 1

Article
Highly Adhesive Antimicrobial Coatings for External Fixation Devices
Gels 2023, 9(8), 639; https://doi.org/10.3390/gels9080639 - 08 Aug 2023
Viewed by 98
Abstract
Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for [...] Read more.
Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation. Full article
(This article belongs to the Special Issue Antibacterial Gels)
Show Figures

Graphical abstract

Article
Layered Sol–Gel Deposition of a Sn, Ti, Zn, and Pr Mixed Oxide Thin Film with Electrical Properties for Gas Sensing
Gels 2023, 9(8), 638; https://doi.org/10.3390/gels9080638 - 08 Aug 2023
Viewed by 81
Abstract
This article presents a layered mixed oxide thin film composed of Sn, Ti, Zn, and Pr obtained by sol–gel deposition for gas sensing applications. The film was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy [...] Read more.
This article presents a layered mixed oxide thin film composed of Sn, Ti, Zn, and Pr obtained by sol–gel deposition for gas sensing applications. The film was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-Vis spectroscopy, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and Electrochemical impedance spectroscopy (EIS). X-ray diffraction results showed the presence of a single crystalline phase with a cassiterite-like structure. Raman spectroscopy revealed characteristic bands of oxygen-deficient SnO2-based nanocrystallites. The band gap energy calculated from UV-Vis spectroscopy is Eg = 3.83 eV. The XPS proved the presence on the surface of all elements introduced by the inorganic precursors as well as their oxidation states. Thus, Sn4+, Ti4+, Zn2+, and Pr3+ were detected on the surface. Moreover, by XPS, we highlighted the presence of OH groups and water adsorbed on the surface. SEM showed the five-layer morphology of the film after five successive depositions. Electrochemical properties were determined by EIS-impedance spectroscopy. The selectivity for gas sensing was also investigated for methane, propane, and formaldehyde and the gas sensing mechanism was explained. The results indicated that the mixed oxide thin film exhibited high sensitivity and selectivity towards specific gases. Full article
Show Figures

Figure 1

Article
Impact of Fat Replacement by Using Organic-Candelilla-Wax-Based Oleogels on the Physicochemical and Sensorial Properties of a Model Cookie
Gels 2023, 9(8), 636; https://doi.org/10.3390/gels9080636 - 08 Aug 2023
Viewed by 109
Abstract
Oleogelation is an alternative process to improve the nutritional properties of food by creating soft-matter structures with the same functionality as commercial fats (shortenings). In this study, oleogels were produced by adding organic candelilla wax at 3% (OC03), 6% (OC06), and 9% (OC09) [...] Read more.
Oleogelation is an alternative process to improve the nutritional properties of food by creating soft-matter structures with the same functionality as commercial fats (shortenings). In this study, oleogels were produced by adding organic candelilla wax at 3% (OC03), 6% (OC06), and 9% (OC09) to extra-virgin linseed oil, and then characterized by their physicochemical properties. Furthermore, the physicochemical and sensorial properties of five cookie formulations were evaluated. Organic candelilla wax influenced the oleogel formulations, giving higher values of color (L* and b*), texture, acidity index, and melting point. In the cookie formulations, the luminosity values decreased when the percentage of oleogel was increased; reddish trends were obtained (a* values) for the cookie where 70% of the fat was replaced by the oleogel (C70), and more yellow trends were obtained (b* values) for C100. The moisture content was higher in cookies with oleogels, but it was within quality limits. The percentage of fat migration was lower in cookies with a mixture of fats and oleogels. In terms of hardness, the substitution of oleogels resulted in softer cookies. In terms of the sensory evaluation, the most accepted cookie was C70. Therefore, this study demonstrates the possibility of using organic-candelilla-wax-based oleogels in a real food model rich in unsaturated fats. Full article
(This article belongs to the Special Issue Advances in Oleogels and Applications)
Show Figures

Graphical abstract

Article
Non-Electroneutrality Generated by Bacteriorhodopsin-Incorporated Membranes Enhances the Conductivity of a Gelatin Memory Device
Gels 2023, 9(8), 635; https://doi.org/10.3390/gels9080635 - 07 Aug 2023
Viewed by 192
Abstract
We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)–lipid membrane into the [...] Read more.
We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)–lipid membrane into the gelatin devices can further increase the electron conductivity of the polypeptide-bound water network and the ON/OFF ratio of the device by two folds. Our photocurrent measurements show that the BR incorporated in the membrane sandwiched in a gelatin device can generate a net proton flow from the counter side to the deposited side of the membrane. This leads to the establishment of non-electroneutrality on the gelatin films adjacent to the BR-incorporated membrane. Our Raman spectroscopy results show that BR proton pumping in the ON state gelatin device increases the bound water presence and promotes polypeptide unwinding compared to devices without BR. These findings suggest that the non-electroneutrality induced by BR proton pumping can increase the extent of polypeptide unwinding within the gelatin matrix, consequently trapping more bound water within the gelatin-bound water network. The resulting rise in hydrogen bonds could expand electron transfer routes, thereby enhancing the electron conductivity of the memory device in the ON state. Full article
(This article belongs to the Special Issue Advances in Functional Gel)
Show Figures

Graphical abstract

Article
β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes
Gels 2023, 9(8), 634; https://doi.org/10.3390/gels9080634 - 07 Aug 2023
Viewed by 178
Abstract
Musculoskeletal pain and inflammation can vary from localised pain like pain in the shoulders and neck to widespread pain like fibromyalgia, and as per estimates, around 90% of humans have experienced such pain. Oral non-steroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed for such [...] Read more.
Musculoskeletal pain and inflammation can vary from localised pain like pain in the shoulders and neck to widespread pain like fibromyalgia, and as per estimates, around 90% of humans have experienced such pain. Oral non-steroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed for such conditions but are associated with concerns like gastric irritation and bleeding. In the present study, a microemulsion-based gel comprising β-caryophyllene, isopropyl myristate, Tween 80, and normal saline was prepared as a topical option for managing topical pain and inflammation. The globules of the microemulsion were below 100 nm with a zetapotential of around −10 mV. The drug entrapment was >87% with a drug loading of >23%. The permeation studies established better skin permeation (20.11 ± 0.96 μg cm−2 h−1) and retention of the drug (4.96 ± 0.02%) from the developed system vis-à-vis the conventional product (9.73 ± 0.35 μg cm−2 h−1; 1.03 ± 0.01%). The dermatokinetic studies established the better pharmacokinetic profile of the bioactive in the epidermis and dermis layers of the skin. The anti-inflammatory potential in carrageenan-induced rat paw oedema was more pronounced than the conventional product (~91% vis-à-vis ~77%), indicating a better pharmacodynamic outcome from the developed system. The nanotechnology-based natural bioactive product with improved efficacy and drug loading can provide a better alternative for the management of musculoskeletal pain. Full article
Show Figures

Figure 1

Review
Cellulose-Based Metallogels—Part 2: Physico-Chemical Properties and Biological Stability
Gels 2023, 9(8), 633; https://doi.org/10.3390/gels9080633 - 07 Aug 2023
Viewed by 254
Abstract
Metallogels represent a class of composite materials in which a metal can be a part of the gel network as a coordinated ion, act as a cross-linker, or be incorporated as metal nanoparticles in the gel matrix. Cellulose is a natural polymer that [...] Read more.
Metallogels represent a class of composite materials in which a metal can be a part of the gel network as a coordinated ion, act as a cross-linker, or be incorporated as metal nanoparticles in the gel matrix. Cellulose is a natural polymer that has a set of beneficial ecological, economic, and other properties that make it sustainable: wide availability, renewability of raw materials, low-cost, biocompatibility, and biodegradability. That is why metallogels based on cellulose hydrogels and additionally enriched with new properties delivered by metals offer exciting opportunities for advanced biomaterials. Cellulosic metallogels can be either transparent or opaque, which is determined by the nature of the raw materials for the hydrogel and the metal content in the metallogel. They also exhibit a variety of colors depending on the type of metal or its compounds. Due to the introduction of metals, the mechanical strength, thermal stability, and swelling ability of cellulosic materials are improved; however, in certain conditions, metal nanoparticles can deteriorate these characteristics. The embedding of metal into the hydrogel generally does not alter the supramolecular structure of the cellulose matrix, but the crystallinity index changes after decoration with metal particles. Metallogels containing silver (0), gold (0), and Zn(II) reveal antimicrobial and antiviral properties; in some cases, promotion of cell activity and proliferation are reported. The pore system of cellulose-based metallogels allows for a prolonged biocidal effect. Thus, the incorporation of metals into cellulose-based gels introduces unique properties and functionalities of this material. Full article
(This article belongs to the Special Issue Properties and Applications of Cellulose Based Gel)
Show Figures

Figure 1

Review
Polymeric Nanoparticles and Nanogels: How Do They Interact with Proteins?
Gels 2023, 9(8), 632; https://doi.org/10.3390/gels9080632 - 06 Aug 2023
Viewed by 234
Abstract
Polymeric nanomaterials, nanogels, and solid nanoparticles can be fabricated using single or double emulsion methods. These materials hold great promise for various biomedical applications due to their biocompatibility, biodegradability, and their ability to control interactions with body fluids and cells. Despite the increasing [...] Read more.
Polymeric nanomaterials, nanogels, and solid nanoparticles can be fabricated using single or double emulsion methods. These materials hold great promise for various biomedical applications due to their biocompatibility, biodegradability, and their ability to control interactions with body fluids and cells. Despite the increasing use of nanoparticles in biomedicine and the plethora of publications on the topic, the biological behavior and efficacy of polymeric nanoparticles (PNPs) have not been as extensively studied as those of other nanoparticles. The gap between the potential of PNPs and their applications can mainly be attributed to the incomplete understanding of their biological identity. Under physiological conditions, such as specific temperatures and adequate protein concentrations, PNPs become coated with a “protein corona” (PC), rendering them potent tools for proteomics studies. In this review, we initially investigate the synthesis routes and chemical composition of conventional PNPs to better comprehend how they interact with proteins. Subsequently, we comprehensively explore the effects of material and biological parameters on the interactions between nanoparticles and proteins, encompassing reactions such as hydrophobic bonding and electrostatic interactions. Moreover, we delve into recent advances in PNP-based models that can be applied to nanoproteomics, discussing the new opportunities they offer for the clinical translation of nanoparticles and early prediction of diseases. By addressing these essential aspects, we aim to shed light on the potential of polymeric nanoparticles for biomedical applications and foster further research in this critical area. Full article
Show Figures

Figure 1

Article
Gel Rheological Properties and Storage Texture Kinetics of Starches Isolated from Anchote (Coccinia abyssinica (Lam.) Cogn.) Cultivars
Gels 2023, 9(8), 631; https://doi.org/10.3390/gels9080631 - 06 Aug 2023
Viewed by 336
Abstract
Anchote is a tuber crop indigenous to Ethiopia. Starch hydration properties and important gel characteristics which include: color, gel rheological properties (at 2, 4, 6, 8, and 10% starch:water w/w) and gel texture evolution (at 10% starch:water w/w [...] Read more.
Anchote is a tuber crop indigenous to Ethiopia. Starch hydration properties and important gel characteristics which include: color, gel rheological properties (at 2, 4, 6, 8, and 10% starch:water w/w) and gel texture evolution (at 10% starch:water w/w), during 0 to 192 h storage (at 4 °C), of anchote starches isolated from four anchote cultivars (Desta 01, Desta 24, white and red) were evaluated and compared with potato and cassava starches (PS and CS). The lightness (L*) and whiteness scores of the anchote starch ranged up to >95, with slight differences among the cultivars, making them pure starches. Swelling power (SP) and water solubility index (WSI) of the anchote starches increased with increasing cooking temperature (40, 50, 60, 70, 80 and 90 °C), and their rate of increase varied significantly with the control starches, as follows: CS < anchote starches < PS. Anchote starch gels resisted higher stresses before breaking their structure and showed higher elasticity with lower (tan δ)1 values than PS and CS gels. They also had greater viscoelastic moduli even at lower concentrations than the PS and CS gels, and their stability increased with increasing concentration. The study of the gels’ texture evolution during storage revealed that anchote starch gels had significantly higher (≥40%) initial and final (after 192 h) hardness and were less adhesive than the PS gel. Despite some significant differences in the studied starch gel quality parameters among the starches from the anchote cultivars, the results suggested their promising potential as additional new materials in the development of food products, specifically as a functional ingredient for the formulation of gel-like products. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels)
Show Figures

Figure 1

Article
Development of Blended Biopolymer-Based Photocatalytic Hydrogel Beads for Adsorption and Photodegradation of Dyes
Gels 2023, 9(8), 630; https://doi.org/10.3390/gels9080630 - 05 Aug 2023
Viewed by 247
Abstract
Blended biopolymer-based photocatalytic hydrogel beads were synthesized by dissolving the biopolymers in 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), adding TiO2, and reconstituting the beads with ethanol. The incorporation of modifying biopolymer significantly enhanced the adsorption capacity of the cellulose/TiO2 beads. Cellulose/carrageenan/TiO2 beads [...] Read more.
Blended biopolymer-based photocatalytic hydrogel beads were synthesized by dissolving the biopolymers in 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]), adding TiO2, and reconstituting the beads with ethanol. The incorporation of modifying biopolymer significantly enhanced the adsorption capacity of the cellulose/TiO2 beads. Cellulose/carrageenan/TiO2 beads exhibited a 7.0-fold increase in adsorption capacity for methylene blue (MB). In contrast, cellulose/chitosan/TiO2 beads showed a 4.8-fold increase in adsorption capacity for methyl orange (MO) compared with cellulose/TiO2 beads. In addition, cellulose/TiO2 microbeads were prepared through the sol–gel transition of the [Emim][Ac]-in-oil emulsion to enhance photodegradation activity. These microbeads displayed a 4.6-fold higher adsorption capacity and 2.8-fold higher photodegradation activity for MB than the millimeter-sized beads. Furthermore, they exhibited superior dye removal efficiencies for various dyes such as Congo red, MO, MB, crystal violet, and rhodamine B, surpassing the performance of larger beads. To expand the industrial applicability of the microbeads, biopolymer/TiO2 magnetic microbeads were developed by incorporating Fe2O3. These magnetic microbeads outperformed millimeter-sized beads regarding the efficiency and time required for MB removal from aqueous solutions. Furthermore, the physicochemical properties of magnetic microbeads can be easily controlled by adjusting the type of biopolymer modifier, the TiO2 and magnetic particle content, and the ratio of each component based on the target molecule. Therefore, biopolymer-based photocatalytic magnetic microbeads have great potential not only in environmental fields but also in biomedical fields. Full article
Show Figures

Figure 1

Article
Tissue Reaction to Low-Density Polyacrylamide Gel as a Carrier for Microimplants in the Adipose Fin of Rainbow Trout
Gels 2023, 9(8), 629; https://doi.org/10.3390/gels9080629 - 05 Aug 2023
Viewed by 242
Abstract
The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism’s tissues. Amorphous hydrogel is advantageous for administration in animal organs due [...] Read more.
The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism’s tissues. Amorphous hydrogel is advantageous for administration in animal organs due to its ease of injection compared to resilient analogs. In this study, we investigated the applicability of a semi-liquid 2.5% polyacrylamide hydrogel (PAAH) as a scaffold for fluorescent polyelectrolyte microcapsules (PMs) in rainbow trout. The hydrogel was injected subcutaneously into the adipose fin, which is a small, highly translucent fold of skin in salmonids that is convenient for implanting optical sensors. Using histological methods, we compared tissue organization and in vivo stability of the applied hydrogel at the injection site after administration of uncoated PMs or PMs coated with 2.5% PAAH (PMs-PAAH) for a period of 3 to 14 days. Our results showed that the introduction of PMs into the gel did not have a masking effect, as they were recognized, engulfed, and carried away by phagocytes from the injection site. However, both PMs and PMs-PAAH were found to provoke chronic inflammation at the injection site, although according to cytokine expression in the fish spleen, the irritating effect was local and did not affect the systemic immunity of the fish. Therefore, our study suggests low applicability of 2.5% polyacrylamide as a scaffold for injectable sensors within a timeframe of days. Full article
(This article belongs to the Special Issue Hydrogel Surface/Coating for Smart Drug Delivery and Medical Devices)
Show Figures

Figure 1

Article
Synthesis and Cytotoxicity Studies of Poly(1,4-butanediol citrate) Gels for Cell Culturing
Gels 2023, 9(8), 628; https://doi.org/10.3390/gels9080628 - 04 Aug 2023
Viewed by 179
Abstract
One of the main branches of regenerative medicine is biomaterials research, which is designed to develop and study materials for regenerative therapies, controlled drug delivery systems, wound dressings, etc. Research is continually being conducted to find biomaterials—especially polymers—with better biocompatibility, broader modification possibilities [...] Read more.
One of the main branches of regenerative medicine is biomaterials research, which is designed to develop and study materials for regenerative therapies, controlled drug delivery systems, wound dressings, etc. Research is continually being conducted to find biomaterials—especially polymers—with better biocompatibility, broader modification possibilities and better application properties. This study describes a potential biomaterial, poly(1,4-butanediol citrate). The gelation time of poly(1,4-butanediol citrate) was estimated. Based on this, the limiting reaction time and temperature were determined to avoid gelling of the reaction mixture. Experiments with different process conditions were carried out, and the products were characterised through NMR spectra analysis. Using statistical methods, the functions were defined, describing the dependence of the degree of esterification of the acid groups on the following process parameters: temperature and COOH/OH group ratio. Polymer films from the synthesised polyester were prepared and characterised. The main focus was assessing the initial biocompatibility of the materials. Full article
(This article belongs to the Special Issue Advance in Supramolecular Gels)
Show Figures

Figure 1

Article
Structural and Physical Characteristics of Mixed-Component Oleogels: Natural Wax and Monoglyceride Interactions in Different Edible Oils
Gels 2023, 9(8), 627; https://doi.org/10.3390/gels9080627 - 04 Aug 2023
Viewed by 184
Abstract
Waxes and monoglycerides (MGs) added in edible oils form oleogels that can be used as an alternative structured fat, providing healthier substitutes to saturated and trans fats in foods. This study aimed to investigate the properties of oleogels formed by the interaction between [...] Read more.
Waxes and monoglycerides (MGs) added in edible oils form oleogels that can be used as an alternative structured fat, providing healthier substitutes to saturated and trans fats in foods. This study aimed to investigate the properties of oleogels formed by the interaction between monoglycerides and different waxes in various edible oils. For this purpose, waxes, namely rice bran (RBW), candelilla (CDW), sunflower (SW), and beeswax (BW), together with MGs in a total concentration level of 15% (w/w) were dissolved in several edible oils (olive, sunflower, sesame, and soybean). The structure and physical properties of oleogels were investigated using texture analysis, polarized light microscopy, melting point measurements, and Fourier-transform infrared spectroscopy (FTIR). The hardest structure was produced by SW/MG (5.18 N), followed by CDW (2.87 N), RBW (2.34 N), BW (2.24 N) and plain MG (1.92 N). Furthermore, RBW and SW led to a higher melting point (69.2 and 67.3 °C) than the plain MG oleogels (64.5 °C). Different crystallization structures, i.e., needle-like crystals and spherulites, were observed depending on the type of wax, its concentration, and the oil used. These results can be used to control the properties of oleogels by adjusting the gelator composition for a variety of potential food applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

Back to TopTop