Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,064)

Search Parameters:
Journal = Insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
First Records of Heartbeats via ECG in a Stingless Bee, Melipona flavolineata (Apidae, Meliponini), during Contention Stress Using Isoflurane as an Anesthetic
Insects 2023, 14(8), 696; https://doi.org/10.3390/insects14080696 - 08 Aug 2023
Viewed by 103
Abstract
The hemodynamic activity of Melipona flavolineata workers was evaluated during restraint stress for a period of 30 min. The observed parameters were power variation in the elapsed time, and subsequently, six periods of one second were divided and called A, B, C, D, [...] Read more.
The hemodynamic activity of Melipona flavolineata workers was evaluated during restraint stress for a period of 30 min. The observed parameters were power variation in the elapsed time, and subsequently, six periods of one second were divided and called A, B, C, D, E and F; in each period, the electrocardiographic parameters were evaluated: spike frequency, amplitude, spike intervals and spike duration. The experiment was carried out with eight worker bees of M. flavolineata, for which electrodes of a nickel–chromium alloy were made. The bees were previously anesthetized with isoflurane and properly contained and fixed in a base for stereotaxis in which the electrode was implanted. All these procedures were performed inside a Faraday cage. The results showed power oscillations during the recording, with the highest energy level being between 300 and 600 s. Spike frequency, spike amplitude, interval between spikes and spike duration parameters underwent changes during the restraint stress period. Thus, the cardiac activity of M. flavolineata can be used as a biomarker and can be used to clarify physiological issues or alterations caused by toxic agents and indicate risk factors for these animals. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

Article
Different Tea Germplasms Distinctly Influence the Adaptability of Toxoptera aurantii (Hemiptera: Aphididae)
Insects 2023, 14(8), 695; https://doi.org/10.3390/insects14080695 - 07 Aug 2023
Viewed by 196
Abstract
Aphids are typical phloem-sucking insect pests. A good understanding regarding their feeding behavior and population dynamics are critical for evaluating host adaptation and screening of aphid-resistant resources. Herein, the adaptability of Toxoptera aurantii (Boyer) (Hemiptera: Aphididae) to different hosts was evaluated via electropenetrography [...] Read more.
Aphids are typical phloem-sucking insect pests. A good understanding regarding their feeding behavior and population dynamics are critical for evaluating host adaptation and screening of aphid-resistant resources. Herein, the adaptability of Toxoptera aurantii (Boyer) (Hemiptera: Aphididae) to different hosts was evaluated via electropenetrography and an age-stage, two-sex life table on six tea germplasms: Zikui (ZK), Zhongcha108 (ZC108), Zhongcha111 (ZC111), Qianmei419 (QM419), Meitan5 (MT5), and Fudingdabaicha (FD). Our findings revealed that the feeding activities of T. aurantii differed considerably among the host plants. T. aurantii exhibited significantly more pathway activities on ZK and FD than on the other hosts. However, the duration of feeding of T. aurantii on ZK phloem considerably decreased compared with those of the other germplasms. Life parameters indicated that T. aurantii exhibited the highest intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ) on MT5, and the maximum values of total longevity and oviposition period were recorded on FD; these variables were reduced significantly on ZK. The results of our study demonstrate that T. aurantii can successfully survive on the six tea germplasms; however, ZK was less suitable for T. aurantii and should be considered as a potential source of resistance in breeding and Integrated Pest Management. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Figure 1

Article
Coffee Berry Borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae): Activity and Infestation in the High Mountain and Blue Mountain Regions of Jamaica
Insects 2023, 14(8), 694; https://doi.org/10.3390/insects14080694 - 05 Aug 2023
Viewed by 263
Abstract
Jamaica produces coffee marketed as Blue Mountain and high mountain (grown outside the Blue Mountains). Since the discovery of the coffee berry borer (CBB; Hypothenemus hampei) in Jamaica in 1978, chemical control has traditionally been the primary approach used to protect the [...] Read more.
Jamaica produces coffee marketed as Blue Mountain and high mountain (grown outside the Blue Mountains). Since the discovery of the coffee berry borer (CBB; Hypothenemus hampei) in Jamaica in 1978, chemical control has traditionally been the primary approach used to protect the crop from the pest. However, in the last 20 years, there has been an effort to shift towards more sustainable management strategies. The study was conducted to determine CBB activity (trap catch) and field infestation on coffee farms in the high mountains and Blue Mountains of Jamaica, over a crop cycle. A total of 27,929 and 12,921 CBBs were captured at high mountain and Blue Mountain farms, respectively. Peak CBB activity occurred in April in the high mountain region (365 CBBs/trap/month) and February in the Blue Mountain region (129 CBBs/trap/month). The highest levels of infestation were in November (33%) and October (34%) in the high mountain region and Blue Mountain region, respectively. There was no significant difference in the patterns of CBB activity and infestation between the study locations, and neither were related to the temperature or relative humidity. However, there was a significant relationship with rainfall. These data suggest that the population dynamics of the CBB may involve complex interactions among weather conditions, berry development, and agronomic practices. Full article
Show Figures

Figure 1

Article
Green Manure Crops as Food Source: Impact on the Performance of the Migratory Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae)
Insects 2023, 14(8), 693; https://doi.org/10.3390/insects14080693 - 05 Aug 2023
Viewed by 163
Abstract
The application of green manure is crucial for achieving sustainable agriculture and animal husbandry, but pest management is often overlooked. Conducting a risk assessment for insect pests in green manure is essential. The beet webworm, Loxostege sticticalis, a polyphagous insect, is currently [...] Read more.
The application of green manure is crucial for achieving sustainable agriculture and animal husbandry, but pest management is often overlooked. Conducting a risk assessment for insect pests in green manure is essential. The beet webworm, Loxostege sticticalis, a polyphagous insect, is currently experiencing an outbreak in northern China, and represents a significant migratory pest. A two-sex life table and flight mill test approach was used to comprehensively evaluate the effects of three major legume green manure crops (Pisum sativam, Vicia sativa, and Vicia villosa) on the growth, development, fecundity, and flight ability of L. sticticalis in China. Our findings indicate that L. sticticalis cannot utilize V. villosa for generational development. L. sticticalis shows reduced performance on P. sativam and V. sativa compared to its suitable host Chenopodium album. However, both the population parameters (R0, r, λ, and T) and the population prediction results suggest that L. sticticalis can adapt to P. sativam and V. sativa. In the process of promoting green manure, careful consideration should be given to the selection of appropriate green manure varieties and the implementation of effective pest control measures during their planting. Our findings lay the groundwork for the promotion of green manure and implementation of an ecological management plan for L. sticticalis. Full article
(This article belongs to the Special Issue Recent Advances in Migrant Insect Pests)
Show Figures

Figure 1

Article
Local-Scale DNA Barcoding of Afrotropical Hoverflies (Diptera: Syrphidae): A Case Study of the Eastern Free State of South Africa
Insects 2023, 14(8), 692; https://doi.org/10.3390/insects14080692 - 04 Aug 2023
Viewed by 168
Abstract
The Afrotropical hoverflies remain an understudied group of hoverflies. One of the reasons for the lack of studies on this group resides in the difficulties to delimit the species using the available identification keys. DNA barcoding has been found useful in such cases [...] Read more.
The Afrotropical hoverflies remain an understudied group of hoverflies. One of the reasons for the lack of studies on this group resides in the difficulties to delimit the species using the available identification keys. DNA barcoding has been found useful in such cases of taxonomical uncertainty. Here, we present a molecular study of hoverfly species from the eastern Free State of South Africa using the mitochondrial cytochrome-c oxidase subunit I gene (COI). The identification of 78 specimens was achieved through three analytical approaches: genetic distances analysis, species delimitation models and phylogenetic reconstructions. In this study, 15 nominal species from nine genera were recorded. Of these species, five had not been previously reported to occur in South Africa, namely, Betasyrphus inflaticornis Bezzi, 1915, Mesembrius strigilatus Bezzi, 1912, Eristalinus tabanoides Jaennicke, 1876, Eristalinus vicarians Bezzi, 1915 and Eristalinus fuscicornis Karsch, 1887. Intra- and interspecific variations were found and were congruent between neighbour-joining and maximum likelihood analyses, except for the genus Allograpta Osten Sacken, 1875, where identification seemed problematic, with a relatively high (1.56%) intraspecific LogDet distance observed in Allograpta nasuta Macquart, 1842. Within the 78 specimens analysed, the assembled species by automatic partitioning (ASAP) estimated the presence of 14–17 species, while the Poisson tree processes based on the MPTP and SPTP models estimated 15 and 16 species. The three models showed similar results (10 species) for the Eristalinae subfamily, while for the Syrphinae subfamily, 5 and 6 species were suggested through MPTP and SPTP, respectively. Our results highlight the necessity of using different species delimitation models in DNA barcoding for species diagnoses. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Article
Functional Divergence of the Tribolium castaneum engrailed and invected Paralogs
Insects 2023, 14(8), 691; https://doi.org/10.3390/insects14080691 - 04 Aug 2023
Viewed by 320
Abstract
Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally, then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results in asegmental larvae. [...] Read more.
Engrailed (en) and invected (inv) encode paralogous transcription factors found as a closely linked tandem duplication within holometabolous insects. Drosophila en mutants segment normally, then fail to maintain their segments. Loss of Drosophila inv is viable, while loss of both genes results in asegmental larvae. Surprisingly, the knockdown of Oncopeltus inv can result in the loss or fusion of the entire abdomen and en knockdowns in Tribolium show variable degrees of segmental loss. The consequence of losing or knocking down both paralogs on embryogenesis has not been studied beyond Drosophila. To further investigate the relative functions of each paralog and the mechanism behind the segmental loss, Tribolium double and single knockdowns of en and inv were analyzed. The most common cuticular phenotype of the double knockdowns was small, limbless, and open dorsally, with all but a single, segmentally iterated row of bristles. Less severe knockdowns had fused segments and reduced appendages. The Tribolium paralogs appear to act synergistically: the knockdown of either Tribolium gene alone was typically less severe, with all limbs present, whereas the most extreme single knockdowns mimic the most severe double knockdown phenotype. Morphological abnormalities unique to either single gene knockdown were not found. inv expression was not affected in the Tribolium en knockdowns, but hh expression was unexpectedly increased midway through development. Thus, while the segmental expression of en/inv is broadly conserved within insects, the functions of en and inv are evolving independently in different lineages. Full article
(This article belongs to the Special Issue Contributions of Women in Insect Science)
Show Figures

Figure 1

Review
Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies
Insects 2023, 14(8), 690; https://doi.org/10.3390/insects14080690 - 04 Aug 2023
Viewed by 351
Abstract
The relationship between insects and humans throughout history has always been complex and multifaceted. Insects are both a source of fascination and fear for humans and have played important roles in human culture, economy, and health. Nowadays, there is growing interest in using [...] Read more.
The relationship between insects and humans throughout history has always been complex and multifaceted. Insects are both a source of fascination and fear for humans and have played important roles in human culture, economy, and health. Nowadays, there is growing interest in using insects as a sustainable and environmentally friendly source of protein and other nutrients. Entomophagy can be seen as a new opportunity for the food industry and global food security. In fact, insects require far fewer resources than traditional livestock, and there are many references to insect consumption in human history. The ancient Romans are known to have eaten various insects, including beetles, caterpillars, and locusts. Insects such as crickets, grasshoppers, and ants have been eaten for centuries and are still considered a delicacy in many parts of the world, especially in Africa, Asia, Latin America, and Oceania. Entomophagy has, thus, been a part of human history for thousands of years and continues to be an important food habit for many people around the world. These topics are explored in this article from a historical and cultural perspective (e.g., ecological, nutritional, spiritual, and socio-psychological), with a focus on the progressive acceptance of edible insects in Western societies, since this novel food has also its roots in the Western world. Full article
(This article belongs to the Section Role of Insects in Human Society)
Article
Poor Air Quality Is Linked to Stress in Honeybees and Can Be Compounded by the Presence of Disease
Insects 2023, 14(8), 689; https://doi.org/10.3390/insects14080689 - 04 Aug 2023
Viewed by 293
Abstract
Climate change-related extreme weather events have manifested in the western United States as warmer and drier conditions with an increased risk of wildfires. Honeybees, essential for crop pollination in California, are at the center of these extreme weather events. We associated the maximum [...] Read more.
Climate change-related extreme weather events have manifested in the western United States as warmer and drier conditions with an increased risk of wildfires. Honeybees, essential for crop pollination in California, are at the center of these extreme weather events. We associated the maximum daily temperature and air quality index values with the performance of colonies placed in wildfire-prone areas and determined the impact of these abiotic stressors on gene expression and histopathology. Our results indicate that poor air quality was associated with higher maximum daily temperatures and a lower gene expression level of Prophenoloxidase (ProPO), which is tied to immune system strength; however, a higher gene expression level of Vitellogenin (Vg) is tied to oxidative stress. There was a positive relationship between Varroa mites and N. ceranae pathogen loads, and a negative correlation between Varroa mites and Heat Shock Protein 70 (HSP70) gene expression, suggesting the limited ability of mite-infested colonies to buffer against extreme temperatures. Histological analyses did not reveal overt signs of interaction between pathology and abiotic stressors, but N. ceranae infections were evident. Our study provides insights into interactions between abiotic stressors, their relation to common biotic stressors, and the expression of genes related to immunity and oxidative stress in bees. Full article
Show Figures

Figure 1

Article
Suppression Trial through an Integrated Vector Management of Aedes albopictus (Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain
Insects 2023, 14(8), 688; https://doi.org/10.3390/insects14080688 - 03 Aug 2023
Viewed by 268
Abstract
In recent years, Aedes albopictus (Skuse, 1984) has expanded its distribution globally due to its high ecological plasticity. This expansion has increased the population’s susceptibility to contracting diseases such as dengue, Zika, and chikungunya, among others, which are transmitted by this mosquito species. [...] Read more.
In recent years, Aedes albopictus (Skuse, 1984) has expanded its distribution globally due to its high ecological plasticity. This expansion has increased the population’s susceptibility to contracting diseases such as dengue, Zika, and chikungunya, among others, which are transmitted by this mosquito species. In the absence of effective control methods, the application of the sterile insect technique (SIT) is proposed as part of an integrated vector management (IVM) program. From 2007 to 2020, this strategy has been tested in a non-isolated mosquito population urban area of 45 ha, representative of the municipalities of the Valencian region (Spain). The population levels of adult females and eggs collected in the traps have been reduced by 70–80% compared to the control area, demonstrating its efficacy in reducing mosquito populations. This work analyzes the impact of the migration of the wild mosquito population from the peri-urban area to the urban core. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Article
Ultrastructural and Descriptive Study on the Adult Body Surface of Heortia vitessoides (Lepidoptera: Crambidae)
Insects 2023, 14(8), 687; https://doi.org/10.3390/insects14080687 - 03 Aug 2023
Viewed by 219
Abstract
Heortia vitessoides Moore, 1885 (Lepidoptera: Crambidae) is an economically important lepidopteran pest that caused severe damage to the plantation area of Aquilaria sinensis (Lour.) Gilg, 1825 (Thymelaeaceae), resulting in extensive defoliation of the trees during an epidemic. In this study, we used scanning [...] Read more.
Heortia vitessoides Moore, 1885 (Lepidoptera: Crambidae) is an economically important lepidopteran pest that caused severe damage to the plantation area of Aquilaria sinensis (Lour.) Gilg, 1825 (Thymelaeaceae), resulting in extensive defoliation of the trees during an epidemic. In this study, we used scanning electron microscopy (SEM) to analyze the external morphology and ultrastructure of sensilla on various body parts of H. vitessoides. Specifically, seven, four, four, and five types of sensilla were found, respectively, on the antennae, proboscis, labial palps, and legs. We described the types, distributions, and sexual dimorphism of these sensilla on antennae, and found that the number and size of sensilla differed significantly between males and females. This study provides crucial information for future investigations into the function of these sensilla in H. vitessoides. Full article
Show Figures

Figure 1

Article
Management of Spodoptera frugiperda J.E. Smith Using Recycled Virus Inoculum from Larvae Treated with Baculovirus under Field Conditions
Insects 2023, 14(8), 686; https://doi.org/10.3390/insects14080686 - 03 Aug 2023
Viewed by 431
Abstract
Fall armyworm (FAW) is a major pest of maize and causes huge losses. Chemical pesticides are the commonly used control strategy among farmers. The efficacy of baculoviruses against FAW has been proven; however, farmers may not be able to afford the products. The [...] Read more.
Fall armyworm (FAW) is a major pest of maize and causes huge losses. Chemical pesticides are the commonly used control strategy among farmers. The efficacy of baculoviruses against FAW has been proven; however, farmers may not be able to afford the products. The use of farmer-produced baculovirus mixtures could provide an opportunity for a nature-based solution for FAW at a low cost. This study evaluated the potential of recycled virus inoculum from FAW larvae treated with a commercial baculovirus (Littovir) for the management of FAW under laboratory and field conditions. In the laboratory, the virus from 25, 50, 75 and 100 FAW larvae caused variable mortality among FAW instars. The highest mortality (45%) among 1st–3rd instars was caused by Littovir followed by recycled virus inoculum from 100 FAW larvae (36%). Under field conditions, even though recycled virus inoculum did not offer adequate protection against FAW damage, the maize yield was comparable to that of commercial insecticide-treated plots and similar to that of control plots. This study has shown the potential use of recycled virus inoculum from infected larvae for the management of FAW. This would offer the farmers a sustainable and affordable option for the management of FAW as it would require the farmers to purchase the commercial baculovirus once and collect larvae from treated plots for repeat applications. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Article
The Effects of Diet on the Immune Responses of the Oriental Armyworm Mythimna separata
Insects 2023, 14(8), 685; https://doi.org/10.3390/insects14080685 - 03 Aug 2023
Viewed by 291
Abstract
Nutrients can greatly affect host immune defenses against infection. Possessing a simple immune system, insects have been widely used as models to address the relationships between nutrition and immunity. The effects of high versus low protein-to-carbohydrate ratio (P:C) diets on insect immune responses [...] Read more.
Nutrients can greatly affect host immune defenses against infection. Possessing a simple immune system, insects have been widely used as models to address the relationships between nutrition and immunity. The effects of high versus low protein-to-carbohydrate ratio (P:C) diets on insect immune responses vary in different studies. To reveal the dietary manipulation of immune responses in the polyphagous agricultural pest oriental armyworm, we examined immune gene expression, phenoloxidase (PO) activity, and phagocytosis to investigate the immune traits of bacteria-challenged oriental armyworms, which were fed different P:C ratio diets. We found the oriental armyworms that were fed a 35:7 (P:C) diet showed higher phenoloxidase (PO) activity and stronger melanization, and those reared on a 28:14 (P:C) diet showed higher antimicrobial activity. However, different P:C diets had no apparent effect on the hemocyte number and phagocytosis. These results overall indicate that high P:C diets differently optimize humoral immune defense responses in oriental armyworms, i.e., PO-mediated melanization and antimicrobial peptide synthesis in response to bacteria challenge. Full article
(This article belongs to the Special Issue Insect Immunity: Evolution, Genomics and Physiology)
Show Figures

Figure 1

Article
Comprehensive Transcriptome Analysis in the Testis of the Silkworm, Bombyx mori
Insects 2023, 14(8), 684; https://doi.org/10.3390/insects14080684 - 02 Aug 2023
Viewed by 259
Abstract
Spermatogenesis is an important process in reproduction and is conserved across species, but in Bombyx mori, it shows peculiarities, such as the maintenance of spermatogonia by apical cells and fertilization by dimorphic spermatozoa. In this study, we attempted to characterize the genes [...] Read more.
Spermatogenesis is an important process in reproduction and is conserved across species, but in Bombyx mori, it shows peculiarities, such as the maintenance of spermatogonia by apical cells and fertilization by dimorphic spermatozoa. In this study, we attempted to characterize the genes expressed in the testis of B. mori, focusing on aspects of expression patterns and gene function by transcriptome comparisons between different tissues, internal testis regions, and Drosophila melanogaster. The transcriptome analysis of 12 tissues of B. mori, including those of testis, revealed the widespread gene expression of 20,962 genes and 1705 testis-specific genes. A comparative analysis of the stem region (SR) and differentiated regions (DR) of the testis revealed 4554 and 3980 specific-enriched genes, respectively. In addition, comparisons with D. melanogaster testis transcriptome revealed homologs of 1204 SR and 389 DR specific-enriched genes that were similarly expressed in equivalent regions of Drosophila testis. Moreover, gene ontology (GO) enrichment analysis was performed for SR-specific enriched genes and DR-specific enriched genes, and the GO terms of several biological processes were enriched, confirming previous findings. This study advances our understanding of spermatogenesis in B. mori and provides an important basis for future research, filling a knowledge gap between fly and mammalian studies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Article
An Optimized Small-Scale Rearing System to Support Embryonic Microinjection Protocols for Western Corn Rootworm, Diabrotica virgifera virgifera
Insects 2023, 14(8), 683; https://doi.org/10.3390/insects14080683 - 02 Aug 2023
Viewed by 195
Abstract
Western corn rootworm (WCR), a major pest of corn, has been reared in laboratories since the 1960s. While established rearing methods are appropriate for maintaining WCR colonies, they are not optimal for performing germline transformation or CRISPR/Cas9-based genome editing. Here we report the [...] Read more.
Western corn rootworm (WCR), a major pest of corn, has been reared in laboratories since the 1960s. While established rearing methods are appropriate for maintaining WCR colonies, they are not optimal for performing germline transformation or CRISPR/Cas9-based genome editing. Here we report the development of an optimized rearing system for use in WCR functional genomics research, specifically the development of a system that facilitates the collection of preblastoderm embryos for microinjection as well as gathering large larvae and pupae for downstream phenotypic screening. Further, transgenic-based experiments require stable and well-defined survival rates and the ability to manipulate insects at every life stage. In our system, the WCR life cycle (egg to adult) takes approximately 42 days, with most individuals eclosing between 41 and 45 days post oviposition. Over the course of one year, our overall survival rate was 67%. We used this data to establish a quality control system for more accurately monitoring colony health. Herein, we also offer detailed descriptions for setting up single-pair crosses and conducting phenotypic screens to identify transgenic progeny. This study provides a model for the development of new rearing systems and the establishment of highly controlled processes for specialized purposes. Full article
(This article belongs to the Collection Science of Insect Rearing Systems)
Show Figures

Graphical abstract

Article
Quarantine Disinfestation of Papaya Mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) Using Gamma and X-rays Irradiation
Insects 2023, 14(8), 682; https://doi.org/10.3390/insects14080682 - 02 Aug 2023
Viewed by 207
Abstract
Paracoccus marginatus is a highly polyphagous invasive pest that poses a significant quarantine threat to tropical and subtropical countries. Infested commodities in international trade should undergo phytosanitary treatment, and irradiation is recommended as a viable alternative to replace methyl bromide fumigation. Dose-response tests were [...] Read more.
Paracoccus marginatus is a highly polyphagous invasive pest that poses a significant quarantine threat to tropical and subtropical countries. Infested commodities in international trade should undergo phytosanitary treatment, and irradiation is recommended as a viable alternative to replace methyl bromide fumigation. Dose-response tests were conducted on the 2-, 4-, and 6-day-old eggs and gravid females of P. marginatus using the X-ray radiation doses of 15–105 Gy with an interval of 15 Gy. Radiotolerance was compared using ANOVA, fiducial overlapping and lethal dose ratio (LDR) test, resulting in no significant difference among treatments, except for the overall mortality and LDR at LD90 (a dose causing 90% mortality at 95% confidence level). The estimated dose for LD99.9968 was 176.5–185.2 Gy, which was validated in the confirmatory tests. No nymphs emerged from a total of 60,386 gravid females exposed to a gamma radiation dose range of 146.8–185.0 Gy in the confirmatory tests. The largest dose in confirmatory tests should be the minimum threshold for phytosanitary treatment, consequently, a minimum dose of 185 Gy is recommended for the phytosanitary irradiation treatment of papaya mealybug-infested commodities, ensuring a treatment efficacy of ≥99.9950% at 95% confidence level. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop